Solar Hydrogen

Hydrogen is an energy-dense, zero-carbon fuel suitable for a range of energy applications which currently have no viable alternative to fossil fuels. In order to decarbonise the energy sector however, we will need an abundant supply of low-cost hydrogen, produced from clean energy sources. Renewable hydrogen can be produced from renewable energy driven electrolysis, but is not currently competitive with fossil fuel sources of hydrogen.

Instead, we are looking at new ways of producing hydrogen directly from sunlight and water. In direct solar hydrogen production, light provides the energy to drive the water splitting redox reaction (via the photovoltaic effect), resulting in hydrogen production in a single integrated system. 

The aim of this project is to design, fabricate and integrate low-cost semiconductors and catalysts for direct solar-to-hydrogen production systems. Analogous to solar power, high solar energy to hydrogen conversion (STH) efficiencies are key to low-cost renewable hydrogen. We are leveraging the rapid advancement in Silicon/Perovskite tandem cells, combined with high performance, low-cost catalysts to design robust integrated solar-driven water splitting systems.

Our work focuses on:

  • designing a range of photovoltaic semiconductor devices, both cells and photoelectrodes specifically for standalone water splitting;
  • developing low-cost, high-efficiency catalysts and co-catalysts;
  • integration of photovoltaic and electrochemical components for systems with maximum efficiency;
  • and developing analytical models to identify performance limitations and to conceptualize optimal device designs


  1. D. Zhang, H. Li, A. Sharma, W. Liang, H. Chen, K. Vora, D. Yan, A. Tricoli, C. Zhao, F. J Beck, K. Rueter, K. Catchpole, S. Karuturi, Unconventional Direct Synthesis of Ni3N/Ni with N-vacancies for Efficient and Stable Hydrogen Evolution, Accepted 2021, Energy and Environmental Science, (2022), Advance Article,  
  2. A. Sharma, T. Duong, P. Liu, J. Soo, D. Yan, D. Zhang, A. Riaz, C. Samundsett, H. Shen, C. Yang, S. Karuturi, K. Catchpole, F. J. Beck, Direct solar to hydrogen conversion enabled by silicon photocathodes with carrier selective passivated contacts, Sustainable Energy & Fuels, (2021), Advance Article,
  3. D. Zhang, W. Liang, A. Sharma, J. D. Buston, A. G. Saraswathyvilasam, F. J. Beck, K. R. Catchpole, S. Karuturi, Ultrathin HfO2 passivated silicon photocathodes for efficient alkaline water splitting, Applied Physics Letters, (2021), 119, 193901,
  4. D. Zhang, J. Z. Soo, H. H. Tan, C. Jagadish, K. Catchpole, S. Karuturi, Earth-Abundant Amorphous Electrocatalysts for Electrochemical Hydrogen Production: A Review, Advanced Energy and Sustainability Research, (2021), 2, 2000071,
  5. Y. Wang, A. Sharma, T. Duong, H. Arandiyan , T. Zhao, D. Zhang, Z. Su, M. Garbrecht, F. J. Beck, S. Karuturi, C. Zhao, and K. Catchpole, Direct Solar Hydrogen Generation at 20% Efficiency Using Low-Cost Materials, Advanced Energy Materials, Accepted 2021
  6. A. Sharma, F. J. Beck, Quantifying and Comparing Fundamental Loss Mechanisms for Solar Hydrogen Generation, Advanced Energy and Sustainability Research, (2020)
  7. S. Karuturi, H. Shen, A. Sharma, F. J. Beck, P. Varadhan, T. Duong, P. R. Narangari, D. Zhang, Y. Wan, J. He, H. H. Tan, C. Jagadish, K. Catchpole, Over 17% Efficiency Stand‐Alone Solar Water Splitting Enabled by Perovskite‐Silicon Tandem Absorbers, Advanced Energy Materials, 10, 28, 2000772, (2020)
  8. F.J. Beck, Rational Integration of Photovoltaics for Solar Hydrogen Generation, ACS Appl. Energy Mater. 2, 9, 6395-6403 (2019)


  1. Technology covered in ACS Chemical and Engineering News Discovery Report How Chemistry can decarbonise the economy and stall global warming, edited by Amanda Yarnell, Q4 2021 
  2. Hail Hydrogen by Nicole Hasham in the Griffith Review, October 2020,
  3. Low-cost direct solar-to-hydrogen ambitions see the light, by Natalie Filatoff in PV Magazine, June 2020,
  4. Low-cost solar-to-hydrogen cell achieves breakthrough 17.6% efficiency, by Baz Blain in New Atlas,18 June 2020,
  5. Australian researchers claim new record for direct ‘solar-to-hydrogen’ solar cells by Michael Mazengarb in RenewEconomy 17th June 2020,
  6. ANU Reasearchers develop direct solar hydrogen production, by Peter Roberts in @AuManufacturing, June 18, 2020,


This project is funded by the Australian Renewable Energy Agency: Efficient solar hydrogen generation

Updated:  10 August 2021/Responsible Officer:  Dean, CECS/Page Contact:  CECS Marketing