Senior Professor Amanda Barnard AM

Senior Professor of Computational Science
Cluster Lead, Computational Science
Deputy Director, School of Computing
BSc (Hons) PhD DSc FAIP FRSC
+61 2 6125 1458

Professor Amanda Barnard is one of Australia's most highly awarded computational scientists. She currently leads research at the interface of computational modeling, high performance supercomputing, and applied machine learning and artificial intelligence (AI).  She was awarded her BSc (Hons) in applied physics in 2000, and her PhD in theoretical condensed matter physics in 2003 from RMIT University.  After graduating she accepted a Distinguished Postdoctoral Fellow in the Center for Nanoscale Materials at Argonne National Laboratory (USA), and the prestigious senior research position as Violette & Samuel Glasstone Fellow at the University of Oxford (UK) with an Extraordinary Research Fellowship at The Queen’s College. Prior to joining ANU she was an ARC QEII Fellow, Office of the Chief Executive Science Leader, and then Chief Research Scientist in Data61 at CSIRO, between 2009 and 2020.

With more than 20 years experience in high performance computing and computational modeling, Prof Barnard is an advocate and champion for computational research in Australia and sits on boards for various institutions, including the External Advisory Board for the Centre for Theoretical and Computational Molecular Science (CTCMS) at the Australian Institute for Bioengineering and Nanotechnology (AIBN) at the University of Queensland, the Advisory Board of the Our Health in Our Hands (OHIOH) Grand Challenge at ANU, and the external Advisory Board of ChoiceFlows Inc. Prof Barnard is a member of the Board of Directors for New Zealand eScience Infrastructure (NeSI), the College of Assessors for the NZ Ministry of Business, Innovation and Employment (MBIE), and the Expert Panel for the CRP scheme of the National Research Foundation of Singapore. She is the Editor-in-Chief and Chair of the Executive Board of Nano Futures (IOP), a member of the Executive Advisory Board for the Journal of Physics: Materials (IOP), the Editorial Advisory Board of Nanoscale (RSC) and the Editorial Advisory Board of Advance Theory and Simulation (Wiley).  She was formerly a Senior Associate Editor for Science Advances (AAAS) from 2014-2017, and the Chair of the Australian National Computational Merit Allocation Scheme (NCMAS) from 2018-2019, having served as Deputy Chair from 2016-2017, and as a committee member since 2012. Prof Barnard is currently the Chair of the Australasian Leadership Computing Grants (ALCG) scheme at the National Computational Infrastructure (NCI), a member of the Programme Committee for Pawsey Supercomputing Centre PaCER Scheme and Strategic Advisor to the Board of Directors at Pawsey.

She has been recognised for leadership, including as a 2017 Woman of Achievement from the Black & White Foundation, as a Finalist for the 2015 Daily Life Women of the Year, and was named as one of the Top 10 Business Women in Australia by the Huffington Post in 2015. Her research has been awarded in five scientific disciplines, including the 2009 Young Scientist Prize in Computational Physics from the International Union of Pure and Applied Physics, the 2009 Mercedes Benz Environmental Research Award, the 2009 Malcolm McIntosh Award from the Prime Minister of Australia for the Physical Scientist of the Year, the 2010 Frederick White Prize from the Australian Academy of Sciences, the 2010 Distinguished Lecturer Award from the IEEE South Australia, the 2010 Eureka Prize for Scientific Research, the 2014 ACS Nano Lectureship (Asia/Pacific) from the American Chemical Society, the 2014 Feynman Prize in Nanotechnology (Theory) from the Foresight Institute, and the 2019 AMMA Medal from the Association of Molecular Modellers of Australasia.  In 2022 she was appointed as a Member of the Order of Australia.

 

 

  • Applied machine learning and artificial intelligence
  • Data science and eResearch
  • Computational methods for the physical sciences, including theoretical development and simulation
  • Materials informatics and nanoinformatics
  • High performance computing

 

Journal Publications

  1. I. C. Kuschnerus, H. Wen, Y. Y. Khine, J. Ruan, C.‐J. Su, U. Jeng, G. Opletal, A.S. Barnard, E. Ōsawa, O. Shenderova, V. Mochalin, M. Liu, S. Chang, Complex dispersion of detonation nanodiamond revealed by machine learning assisted cryo‐TEM and coarse‐grained molecular dynamics simulations. ACS Nanosci. Au 3, (2023), 211–221
  2. N. Bhat, A.S. Barnard, N. Birbilis, Improving the prediction of mechanical properties of aluminium alloy using data‐driven class-based regression. Comp. Mater. Sci. 228 (2023) 112270
  3. W. Huang, T. Liu, H. Suominen, G. Rice, C.S. Gallo, A.S. Barnard, Explainable discovery of disease biomarkers: The case of ovarian cancer to illustrate the best practice in machine learning and Shapley analysis. J. Biomedical Informatics, 141 (2023) 104365.
  4. N. Bhat, A.S. Barnard, N. Birbilis, Unsupervised machine learning discovers eight classes in aluminium alloys. Royal Soc. Open Sci. 10 (2023) 220360.
  5. J.Y.C. Ting, A.J. Parker, A.S. Barnard, Data-driven design of classes of ruthenium nanoparticles using multi-target Bayesian inference. Chem. Mater. 35 (2023) 728 – 738.
  6. W. Huang, A.S. Barnard, Federated data processing and learning for collaboration in the physical sciences. Mach. Learn. Sci. Tech. 3 (2022) 045023.
  7. S.A. Idrus-Saidi, J. Tang, S. Lambie, M. Mayyas, M.B. Ghasemian, F.-M. Allioux, S. Cai, P. Koshy, P. Mostaghimi, K.G. Steenbergen, A.S. Barnard, T. Daeneke, N. Gaston, K. Kalantar-Zadeh, Liquid metal synthesis solvents for metallic crystals. Science 378 (2022) 1118 – 1124.
  8. S. Li, J.Y.C. Ting, A.S. Barnard, Impact of domain-driven and data-driven feature selection on the inverse design of nanoparticle electrocatalysts using machine learning. J. Comp. Sci. 65 (2022) 101896.
  9. J.Y.C. Ting, S. Li, A.S. Barnard, Causal paths allowing simultaneous control of multiple nanoparticle properties using multi-target Bayesian inference. Adv. Theory Simul. 5 (2022) 2200330.
  10. S. Li, A.S. Barnard, Inverse design of MXenes for high-capacity energy storage materials using multi-target classification and regression. Chem. Mater. 34 (2022) 4964 – 4974.
  11. B. Motevalli, B. Fox, A.S. Barnard, Charge-dependent Fermi level of graphene oxide nanoflakes from machine learning. Comp. Mater. Sci. 211 (2022) 111526.
  12. S. Li, A.S. Barnard, Safety-by-design using forward and inverse multi-target machine learning. Chemosphere 301 (2022) 135033.
  13. B. Motevalli, L. Hyde, B. Fox, A.S. Barnard, Predicting the probability of observation of arbitrary graphene oxide nanoflakes using artificial neural networks. Adv. Theory Simul. 5 (2022) 2200013.[Cover]
  14. J.Y.C. Ting, A.S. Barnard, Data-driven causal inference of process-structure relationships in nanocatalysis. Curr. Opin. Chem. Eng. 36 (2022) 100818.
  15. S. Li, A.S. Barnard, Inverse design of nanoparticles using multi-target machine learning. Adv. Theory Simul. 5  (2022) 2100414.
  16. G. Opletal, A.S. Barnard, Simulating facet-dependent aggregation and assembly of mixtures of polyhedral nanoparticles.  Adv. Theory Simul. 5 (2022) 2100279.
  17. A.S. Barnard, Explainable prediction of N–V related defects in nanodiamond using neural networks and Shapley values. Cell Reports Physical Science 3 (2022) 100696.
  18. J.M. Fischer, A.J. Parker, A.S. Barnard, Interfacial Informatics, J. Phys. Mater. 4 (2021) 041001.
  19. H. Yin, Z. Sun, Z. Wang, D. Tang, C. H. Pang, X. Yu, A. S. Barnard, H. Zhao, Z. Yin, When 2D materials meet machine learning: The data-intensive scientific revolution. Cell Press Physical Science 2 (2021) 100482.
  20. T. Liu, A.S. Barnard, Fast derivation of Shapley based feature importances through feature extraction methods for nanoinformatics. Mach. Learn. Sci. Tech. 2 (2021) 035034
  21. H. Zhang, A.S. Barnard, Impact of atomistic or crystallographic descriptors for classification of gold nanoparticles. Nanoscale 13 (2021) 11887 – 11898
  22. R. Stocks, A.S. Barnard, Enhancing classical simulations with electronic corrections and artificial neural networks. J. Phys: Cond. Matter. 33 (2021) 324003.
  23. D.R. Gunasegaram, A.B. Murphy, A. S. Barnard, T. DebRoy, I. Matthews, L. Ladani, D. Gu, Towards developing multiscale-multiphysics models and their surrogates for digital twins of metal additive manufacturing, Add. Manufact. 46 (2021) 102089.
  24. A.J. Parker, A.S. Barnard, Unsupervised structure classes vs supervised property classes of silicon quantum dots using neural networks, Nanoscale Hozizons. 6 (2021) 277 – 282.
  25. A.J. Parker, B. Motevalli, G. Opletal, A.S. Barnard, The pure and representative types of disordered platinum nanoparticles from machine learning, Nanotech. 32 (2021) 095404
  26. G. Opletal, S.L.Y. Chang, A.S. Barnard, Simulating facet-dependent aggregation and assembly of distributions of polyhedral nanoparticles. Nanoscale, 12 (2020) 19870 – 19879.
  27. A.J. Parker, A.S. Barnard, Machine learning reveals multiple classes of diamond nanoparticles. Nanoscale Horizons, 5 (2020) 1394 – 1399.
  28. J.M. Fischer, M. Hunter, M. Hankel, D. Seales, A.J. Parker, A.S. Barnard, Accurate prediction of binding energies for two-dimensional catalytic materials using machine learning. ChemCatChem, 12 (2020) 5109 – 5120.
  29. A.S. Barnard, G. Opletal, Selecting machine learning models for metallic nanoparticles. Nano Futures, 4 (2020) 035003. 
  30. A.J. Parker, G. Opletal, A.S. Barnard, Classification of platinum nanoparticle catalysts using machine learning. J. Appl. Phys. 128 (2020) 014301.[Cover]
  31. A.S. Barnard, Best practice leads to the best materials informatics. Matter, 3 (2020) 22 – 23.
  32. B. Motevalli, B. Sun, A.S. Barnard, Understanding and predicting the cause of defects in graphene oxide nanostructures using machine learning. J. Phys. Chem. C, 124 (2020) 7404 – 7413.
  33. G. Opletal, M. Golebiewski, A.S. Barnard, Simulated nanoparticle assembly using protoparticles (SNAP). J. Phys.: Mater. 3 (2020) 026001.
  34. S.L.Y. Chang, P. Reineck, D. Williams, G. Bryant, G. Opletal, S.A. El-Demrdash, P.L. Chiu, E. Osawa, A.S. Barnard, D. Dwyer, Dynamic self-assembly of detonation nanodiamond in water. Nanoscale 12, (2020) 5363 – 5367.
  35. T. Cox, B. Motevalli, G. Opletal, A.S. Barnard, Feature engineering of solid state crystalline lattices for machine learning. Adv. Theory Simul. 2 (2020) 1900190.
  36. B. Motevalli, A.J. Parker, B. Sun, A.S. Barnard, The representative structure of graphene oxide nanoflakes from machine learning. Nano Futures 3 (2019) 045001.
  37. A.S. Barnard, G. Opletal, Predicting structure/property relationships in multi-dimensional nanoparticle data using t-distributed stochastic neighbor embedding and machine learning. Nanoscale 11 (2019) 23165 – 23172.
  38. A.J. Parker, A.S. Barnard, Selecting appropriate clustering methods for materials science applications of machine learning. Adv. Theory Simul. 2 (2019) 1900145. [Cover]
  39. A.S. Barnard, B. Motevalli, A.J. Parker, J.M. Fisher, C.A. Feigl, G. Opletal, Nanoinformatics, and the big challenges for the science of small things. Nanoscale 11 (2019) 19190 – 19201.
  40. S.L.Y. Chang, D. Williams, M. Roldan Gutierrez, C. Dwyer, A. Barnard, Aggregation behavior of detonation nanodiamond in solution, Micros. Microanal. 25 (2019) 1740 – 1741
  41. A.S. Barnard, B. Motevalli, B. Sun, Identifying hidden high-dimensional structure/property relationships using self-organising maps. MRS Comm. 9 (2019) 730 – 736
  42. C.A. Feigl, B. Motevalli, A.J. Parker, B. Sun, A.S. Barnard, Classifying and predicting the electron affinity of diamond nanoparticles using machine learning. Nanoscale Horiz. 4 (2019) 983 – 990
  43. A.S. Barnard, G. Opletal, S.L.Y. Chang, Does twinning impact structure/property relationships in diamond nanoparticles? J. Phys. Chem. C, 123 (2019) 11207 – 11215
  44. B. Sun, A.S. Barnard, Visualising multi-dimensional structure/property relationships with machine learning. J. Phys.: Mater. 2 (2019) 034003
  45. G. Opletal, B. Sun, T.C. Petersen, S.P. Russo, A.S. Barnard, Vacancy induced formation of nanoporous silicon, carbon and silicon carbide. PhysChemChemPhys 21 (2019) 6517 – 6524
  46. B. Sun, H. Barron, G. Opletal, A.S. Barnard, From process to properties: Correlating synthesis conditions and structural disorder of platinum nanocatalysts. J. Phys. Chem. C 122 (2018) 28085 – 28093
  47. T. Yan, B. Sun, A.S. Barnard, Predicting archetypal nanoparticle shapes using a combination of thermodynamic theory and machine learning. Nanoscale 10 (2018) 21818 – 21826
  48. B. Sun, H. Barron, B. Wells, G. Opletal, A.S. Barnard, Correlating anisotropy and disorder with the surface structure of platinum nanoparticles. Nanoscale 10 (2018) 20393 – 20404
  49. G. Opletal, T.C. Petersen, S.P. Russo, A.S. Barnard, PorosityPlus: Characterisation of defective, nanoporous and amorphous materials. J. Phys.: Mater. 1 (2018) 016002
  50. B. Sun, A.S. Barnard, Texture based image classification for nanoparticle surface characterisation and machine learning. J. Phys.: Mater. 1 (2018) 016001
  51. L. Gloag, T. Benedetti, S. Cheong, Y. Li, X.H. Chan, L-M. Lacroix, S.L.Y. Chang, R. Arenal, I. Florea, H. Barron, A.S. Barnard, A.M. Henning, C. Zhao, W. Schuhmann, J.J. Gooding, R.D. Tilley, Three-dimensional branched and faceted gold-ruthenium nanoparticles: Using nanostructure to improve stability in oxygen evolution electrocatalysis. Angew. Chemie Int. Ed. 6 (2018) 10241 – 10245
  52. E. Swann, B. Sun, D.M. Cleland, A.S. Barnard, Representing molecular and materials data for unsupervised machine learning. Molec. Simulat. 44 (2018) 905 – 920
  53. A.S. Barnard, Predicting the impact of structural diversity on the performance of nanodiamond drug carriers. Nanoscale 10 (2018) 8893 – 8910
  54. S.L.Y. Chang, C. Dwyer, E. Osawa, A.S. Barnard, Size dependent surface reconstruction in detonation nanodiamond. Nanoscale Horiz. 3 (2018) 213 – 217
  55. B. Sun, M. Fernandez, A.S. Barnard, Machine learning for silver nanoparticle electron transfer property prediction. J. Chem. Info. Mod. 57 (2017) 2413 – 2423
  56. M. Fernandez, H. Barron, A.S. Barnard, Artificial neural network analysis of the catalytic efficiency of platinum nanoparticles. RSC Advances 7 (2017) 48962 – 48971
  57. B. Sun, A.S. Barnard, Impact of size and shape distributions on the electron charge transfer properties of silver nanoparticles. Nanoscale 9 (2017) 12698 – 12708
  58. M. Fernandez, A. Bilic, A.S. Barnard, Machine learning and genetic algorithm prediction of energy differences between electronic calculations of graphene nanoflakes. Nanotech. 28 (2017) 38LT03
  59. S.L.Y Chang, C. Dwyer, K. March, M. Mermoux, N. Nunn, O. Shenderova, E. Osawa, A.S. Barnard, Atomic and electronic structures of functionalized nanodiamond particles, Micros. Microanal. 23 (2017) 2270 – 2271
  60. E. Swann, M. Fernandez, M.L. Coote, A.S. Barnard, Bias-free chemically diverse test sets from machine learning. ACS Combi Sci. 19 (2017) 544 – 554
  61. G. Opletal, T.C. Petersen, A.S. Barnard, S.P. Russo, On reverse monte carlo constraints and model reproduction. J. Comp. Chem. 38 (2017) 1547 – 1551
  62. E. Swann, M.L. Coote, A.S. Barnard, M.C. Per, Efficient protocol for quantum Monte Carlo calculations of hydrogen abstraction barriers: Application to methanol. Int. J. Quant. Chem. 117 (2017) e25361
  63. H. Barron, G. Opletal, R.D. Tilley, A.S. Barnard, Predicting the role seed morphology in the evolution of anisotropic nanocatalysts. Nanoscale 9 (2017) 1502 – 1510
  64. M. Fernandez, H.F. Wilson, A.S. Barnard, Impact of distributions on the prediction of nanoparticle prototypes and archetypes. Nanoscale 9 (2017) 832 – 843
  65. A.S. Barnard, Heterogeneous PEGylation of diamond nanoparticles. Nanoscale 9 (2017) 70 – 74
  66. A.S. Barnard, E. Wei, L. Zadorin, J.J. Louviere, Using hypothetical product configurators to measure consumer preferences for nanoparticle size and concentration in sunscreens. Design Sci. 2 (2016) e12
  67. M. Fernandez, J.I. Abreu, H.Q. Shi, A.S. Barnard, Machine learning prediction of the energy gap of graphene nanoflakes using topological autocorrelation vectors. ACS Combi. Sci. 18 (2016) 661 – 664
  68. S.L.Y. Chang, A.S. Barnard, C. Dwyer, C.B. Boothroyd, E. Osawa, R.J. Nicholls, Surface and point defect measurements of detonation nanodiamond using combined Cs-Cc corrected TEM and ab initio calculations, Micros. Microanal. 22 (2016) 1392 – 1393
  69. L. Lai, A.S. Barnard, Tunable charge transfer on selectively functionalised diamond nanoparticles. Diamond & Relat. Mater. 68 (2016) 78 – 83
  70. B. Sun, A.S. Barnard, Impact of speciation on the electron charge transfer properties of nanodiamond drug carriers. Nanoscale 8 (2016) 14264 – 14270
  71. M. Fernandez, M. Breedon, I.S. Cole, A.S. Barnard, Modeling corrosion inhibition efficacy of small organic molecules as non-toxic chromate alternative using comparative molecular surface analysis (CoMSA), Chemosphere 160 (2016) 80 – 88
  72. S.L.Y. Chang, A.S. Barnard, C. Dwyer, C.B. Boothroyd, R. Hocking, E. Osawa, R.J. Nicholls, Counting vacancies and nitrogen-vacancy centers in detonation nanodiamond. Nanoscale 19 (2016) 10548 – 10552
  73. C. Higgins, R.L. Nixon, A.S. Barnard, Nanotechnology in dermatology - New frontiers. Australasian J. Derma. 57 (2016) 28
  74. H.F. Wilson, C. Tang, A.S. Barnard, Morphology of zinc oxide nanoparticles and nanowires: role of surface and edge energies. J. Phys. Chem. C 120 (2016) 9498 – 9505
  75. M. Fernandez, A.S. Barnard, Geometrical properties can predict CO2 and N2 adsorption performance of metal-organic frameworks (MOFs) at low pressure. ACS Comb. Sci. 18 (2016) 243 – 252
  76. H.F. Wilson, A.S. Barnard, Water bilayers on ZnO(1010) surfaces: data-driven structural search. RSC Advances 6 (2016) 30928 – 30936
  77. L. Lai, A.S. Barnard, Site-dependent atomic and molecular affinities of hydrocarbons, amines and thiols on diamond nanoparticles. Nanoscale 8 (2016) 7899 – 7905 [Cover]
  78. M. Fernandez, H.Q. Shi, A.S. Barnard, Geometrical features can predict electronic properties of graphene nanoflakes. Carbon 103 (2016) 142 – 150
  79. M.R. Bassett, T. Morishita, H.F. Wilson, A.S. Barnard, M.J.S. Spencer, Phenol-modified silicene; preferred substitution site and electronic properties. J. Phys. Chem. C 120 (2016) 6762 – 6770 [Cover]
  80. B. Sun, M. Fernandez, A.S. Barnard, Statistics, damned statistics and nanoscience - Using data science to meet the challenge of nanomaterial complexity. Nanoscale Horiz. 1 (2016) 89 – 95 [Back Cover]
  81. M.C. Per, A.S. Barnard, I.K. Snook, High-throughput simulation of the configuration and ionization potential of nitrogen doped graphene. Molec. Simulat. 42 (2016) 458 – 462 [Cover]
  82. A.S. Barnard, Challenges in modelling nanoparticles for drug delivery. J. Phys.: Condens. Matter 28 (2016) 023002
  83. H. Barron, G. Opletal, R.D. Tilley, A.S. Barnard, Dynamic evolution of specific catalytic sites on Pt nanoparticles. Catal. Sci. Technol. 6 (2016) 144 – 151
  84. M. Fernandez, H.Q. Shi, A.S. Barnard, Quantitative structure-property relationship modeling of electronic properties of graphene using atomic radial distribution function scores. J. Chem. Info. Mod. 55, (2015) 2500 – 2506
  85. M. Fernandez, A.S. Barnard, Identification of nanoparticle prototypes and archetypes. ACS Nano 9 (2015) 11980 – 11992
  86. H.F. Wilson, A.S. Barnard, Thermodynamics of hydrogen adsorption and incorporation at the ZnO(1010) surface. J. Phys. Chem. C 119 (2015) 26560 – 26565
  87. C. Tang, H.F. Wilson, M.J.S. Spencer, A.S. Barnard, Catalytic potential of highly defective (211) surfaces of zinc blende ZnO. PhysChemChemPhys. 17 (2015) 27683 – 27689
  88. H. Barron, A.S. Barnard, Using structural diversity to tune the catalytic performance of Pt nanoparticle ensembles. Catal. Sci. Technol. 5 (2015) 2848 – 2855
  89. A.S. Barnard, H.F. Wilson, Optical emission of statistical distributions of silicon quantum dots. J. Phys. Chem. C, 119 (2015) 7969 – 7977
  90. A.S. Barnard, Materials Science - Nanoscale Locomotion without fuel. Nature 519 (2015) 37 – 38
  91. H.Q. Shi, R.J. Rees, M.C. Per, A.S. Barnard, Impact of distributions and mixtures on the charge transfer properties of graphene nanoflakes. Nanoscale, 7 (2015) 1864 – 1871
  92. L. Lai, A.S. Barnard, Functionalized nanodiamonds for biological and medical applications. J. Nanosci. Nanotech. 15, (2015) 989 – 999
  93. A.S. Barnard, Impact of distributions on the photocatalytic performance of anatase nanoparticle ensembles. J. Mater. Chem. A 3 (2015) 60 – 64 [Cover]
  94. L. Lai, A.S. Barnard, Tuning the electron transfer properties of entire nanodiamond ensembles. J. Phys. Chem. C, 118, (2014) 30209 – 30215
  95. H.F. Wilson, L. McKenzie-Sell, A.S. Barnard, Shape dependence of the band gaps in luminescent silicon quantum dots. J. Mater. Chem. C, 2 (2014) 9451 – 9456
  96. L. Lai, A.S. Barnard, Anisotropic adsorption and distribution of immobilized carboxyl on nanodiamond. Nanoscale, 6 (2014) 14185 – 14189
  97. A.S. Barnard, M.C. Per, Size and shape dependent deprotonation potential and proton affinity of nanodiamond. Nanotech. 25 (2014) 445702
  98. C. Tang, M.J.S. Spencer, A.S. Barnard, Activity of ZnO polar surfaces: An insight from surface energies. PhysChemChemPhys. 16 (2014) 22139 – 22144
  99. P. Chen, S.A. Seabrook, V.C. Epa, J. Newman, A.S. Barnard, D.A. Winkler, J.K. Kirby, P.C. Ke, The contrasting effects of nanoparticle binding on protein denaturation. J. Phys. Chem. C, 118 (2014) 22069 – 22078
  100. M. Breedon, M.C. Per, I. Cole, A.S. Barnard, Molecular ionization and deprotonation energies as indicators of functional coating performance. J. Mater. Chem. A, 2 (2014) 16660 – 16668
  101. H. F. Wilson, A.S. Barnard, Thermodynamic control of halogen-terminated silicon nanoparticle morphology. Cryst. Growth & Des. 14 (2014) 4468 – 4474
  102. A.S. Barnard, Clarifying stability, probability and population in nanoparticle ensembles. Nanoscale 8 (2014) 9983 – 9990 [Cover]
  103. A.S. Barnard, In silico Veritas. ACS Nano, 8 (2014) 6520 – 6525
  104. D.A. Winkler, M. Breedon, C. Chu, F. Burden, A.S. Barnard, Tim Harvey, I. Cole, Towards chromate-free corrosion inhibitors: structure-property models for organic alternatives. Green Chem. 16 (2014) 3349 – 3357
  105. A.L. Gonzalez, C. Noguez, J. Beranek, A.S. Barnard, Size, shape, stability and color of plasmonic silver nanoparticles. J. Phys. Chem. C 118 (2014) 9128 – 9136
  106. H.F. Wilson, A.S. Barnard, Predictive morphology control of hydrogen-terminated silicon nanoparticles. J. Phys. Chem. C 118 (2014) 2580 – 2586
  107. A.S. Barnard, Optimal vacancy concentrations to maximize the N-V yield in nanodiamonds. Mater. Horizons 1 (2014) 289 – 291
  108. A.S. Barnard, E. Osawa, The impact of structural polydispersivity on the surface electrostatic potential of nanodiamond. Nanoscale, 6 (2014) 1188 – 1194
  109. A.S. Barnard, Modelling the impact of alkanethiol SAMs on the morphology of gold nanocrystals. Cryst. Growth Des. 13 (2013) 5433 – 5441
  110. L.K. Randeniya, H.Q. Shi, A.S. Barnard, J. Fang, P.J. Martin, K. Ostrikov, Harnessing the influence of reactive edges and defects of graphene substrates for achieving complete cycle of room-temperature molecular sensing. Small 9 (2013) 3993 – 3999
  111. H.Q. Shi, L. Lai, I.K. Snook, A.S. Barnard, Relative stability of graphene nano-flakes under environmentally relevant conditions. J. Phys. Chem. C 117 (2013) 15375 – 15382
  112. L. Lai, A.S. Barnard, Diamond nanoparticles as a new platform for the sequestration of waste carbon. PhysChemChemPhys. 15 (2013) 9156 – 9162
  113. A.L. Gonzalez, C. Noguez, A.S. Barnard, Mapping the structural and optical properties of anisotropic gold nanoparticles. J. Mater. Chem. C 1 (2013) 3150 – 3157
  114. H.Q. Shi, I.K. Snook, A.S. Barnard, Site-dependent stability and electronic structure of single vacancy point defects in hexagonal graphene nano-flakes. PhysChemChemPhys. 15 (2013) 4897 – 4905 [Cover]
  115. A.S. Barnard, Modeling polydispersive ensembles of diamond nanoparticles. Nanotech. 24 (2013) 085703
  116. H. Guo, H.F. Xu, A.S. Barnard, Can hematite nanoparticles be an environmental indicator? Energy & Environ. Sci. 6 (2013) 561 – 569
  117. H. Guo, A.S. Barnard, Naturally occurring iron oxide nanoparticles: Morphology, materials chemistry and environmental stability. J. Mater Chem. A 1 (2013) 27 – 42 [Cover]
  118. A.S. Barnard, Direct comparison of kinetic and thermodynamic influences on gold nanomorphology. Acc. Chem. Res. 45 (2012) 1688 – 1697
  119. C.A. Feigl, S.P. Russo, A.S. Barnard, Modelling nanoscale cubic ZnS morphology and thermodynamic stability under sulphur-rich conditions. Cryst. Eng. Comm. 14 (2012) 7749 – 7758 [Cover]
  120. H.Q. Shi, A.S. Barnard, I.K. Snook, Quantum mechanical properties of graphene nano-flakes and quantum dots. Nanoscale 4 (2012) 6761 – 6767 [Cover]
  121. H. Guo, A.S. Barnard, Environmentally dependent stability of low-index hematite surfaces. J. Colloid. Int. Sci. 386 (2012) 315 – 324
  122. C.A. Feigl, S.P. Russo, A.S. Barnard, Modelling polar wurtzite ZnS nanoparticles: the effect of sulphur supersaturation on size- and shape-dependent phase transformations. J. Mater. Chem. 22 (2012) 18992 – 18998
  123. H.Q. Shi, A.S. Barnard, I.K. Snook, High throughput theory and simulation of nanomaterials: Exploring the stability and electronic properties of nanographene. J. Mater. Chem. 22 (2012) 18119 – 18123
  124. L. Lai, A.S. Barnard, Surface phase diagram and thermodynamic stability of functionalisation of nanodiamonds. J. Mater. Chem. 22 (2012) 16774 – 16780
  125. Y. Chen, Y. Zhang, D.J.S. Birch, A.S. Barnard, Creation and luminescence of size selected gold nanorods. Nanoscale 4 (2012) 5017 – 5022
  126. A.L. Gonzalez, C. Noguez, A.S. Barnard, Map of the structural and optical properties of gold nanoparticles at thermal equilibrium. J. Phys. Chem. C 116 (2012) 14170 – 14175
  127. A.S. Barnard, Modelling of the reactivity and stability of carbon nanotubes under environmentally relevant conditions. PhysChemChemPhys. 14 (2012) 10080 – 10093 [Cover]
  128. L. Lai, A.S. Barnard, Charge-induced restructuring and decomposition of bucky-diamonds. J. Mater. Chem. 22 (2012) 13141 – 13147
  129. C.A. Feigl, A.S. Barnard, S.P. Russo, Size- and shape-dependent phase transformations in wurtzite ZnS nanostructures. PhysChemChemPhys. 14 (2012) 9871 – 9879
  130. A.S. Barnard, Mapping the shape and phase of palladium nanocatalysts. Catal. Sci. Tech. 2 (2012) 1485 – 1492
  131. S.L.Y. Chang, A.S. Barnard, C. Dwyer, T.W. Hansen, J.B. Wagner, R.E. Dunin-Borkowski, M. Weyland, H. Konishi, H.F. Xu, Stability of porous platinum nanoparticles: combined in-situ TEM and theoretical study. J. Phys. Chem. Lett. 3 (2012) 1106 – 1110
  132. L. Lai, A.S. Barnard, Inter-particle interactions and self-assembly of functionalized nanodiamonds. J. Phys. Chem. Lett. 3 (2012) 896 – 901
  133. A.S. Barnard, I.K. Snook, Ripple induced changes in the wavefunction of graphene: An example of a fundamental symmetry breaking. Nanoscale, 4 (2012) 1167 – 1170 [Cover]
  134. L. Lai, A.S. Barnard, Nanodiamond for hydrogen storage: Temperature-dependent hydrogenation and charge-induced dehydrogenation. Nanoscale 4 (2012) 1130 – 1137105.
  135. H. Guo, A.S. Barnard, Surface phase diagram of hematite pseudocubes in hydrous environments. J. Mater. Chem. 22 (2012) 161 – 167
  136. H.Q. Shi, A.S. Barnard, I.K. Snook, Modelling the role of size, edge structure and terminations on the electronic properties of trigonal graphene nano-flakes. Nanotech. 23 (2012) 065707
  137. H. Guo, A.S. Barnard, Surface structure and environment-dependent hydroxylation of hematite (100) from density functional theory modeling. J. Phys. Chem. C 115 (2011) 23023 – 23029
  138. A.S. Barnard, H. Konishi, H. Xu, Morphology mapping of platinum catalysts over the entire nanoscale. Catal. Sci. Technol. 1 (2011) 1440 – 1488
  139. H. Guo, A.S. Barnard, Proton transfer in the hydrogen-bond chains of lepidocrocite: A computational study. PhysChemChemPhys. 13 (2011) 17864 – 17869
  140. A.S. Barnard, Y. Chen, Kinetic modelling of the shape-dependent evolution of faceted gold nanoparticles. J. Mater. Chem. 21 (2011) 12239 – 12245 [Cover]
  141. A.S. Barnard, I.K. Snook, Modelling the role of size, edge structure and terminations on the electronic properties of graphene nano-flakes. Model. Simulat. Mater. Sci. Eng. 19 (2011) 054001
  142. L. Lai, A.S. Barnard, Modeling the atomic structure and thermostability of oxygen, hydroxyl, and water functionalization of nanodiamonds. Nanoscale, 3 (2011) 2566 – 2575
  143. H. Guo, A.S. Barnard, Thermodynamic modelling of nanomorphologies of hematite and goethite. J. Mater. Chem. 21 (2011) 11566 – 11577
  144. I.K. Snook, A.S. Barnard, Theory, experiment and applications of graphene nano-flakes. J. Nanosci. Lett. 1 (2011) 50 – 60 [Cover of Inaugural Issue]
  145. L. Lai, A.S. Barnard, Stability of nanodiamond exposed to N, NH and NH2. J. Phys. Chem. C, 115 (2011) 6218 – 6228
  146. A. Adnan, R. Lam, C. Hanning, J. Lee, D. J. Schaffer, A.S. Barnard, G. C. Schatz, D. Ho, W. K. Liu, Atomistic Simulation and measurement of pH dependent cancer therapeutic interactions with nanodiamond carriers. Mol. Pharmaceutics, 8 (2011) 368 – 374
  147. C.A. Feigl, A.S. Barnard, S.P. Russo, Comparative density functional theory investigation of the mechanical and energetic properties of ZnS. Molec. Simulat. 37 (2011) 321
  148. H. Guo, A.S. Barnard, Computational challenges in accurate modeling of iron oxides and oxyhydroxides, and the prediction of environmentally sensitive phase transformations. Phys. Rev. B. 83 (2011) 094112 – 094130
  149. L.Y. Chang, E. Osawa, A.S. Barnard, Confirmation of the electrostatic self-assembly of nanodiamonds. Nanoscale, 3 (2011) 958 – 962
  150. A.S. Barnard, I.K. Snook, Ideality versus reality: Predicting the effect of realistic environments on the electronic properties of nanographene. Nanosci. Nanotech. Lett. 3 (2011) 59 – 62
  151. A.S. Barnard, Mapping the photocatalytic activity or potential free radical toxicity of nanoscale titania. Energy & Environ. Sci. 4 (2011) 439 – 443 [Cover]
  152. A.S. Barnard, L.Y. Chang, Thermodynamic cartography and structure/property mapping of commercial platinum catalysts. ACS Catalysis, 1 (2011) 76 – 81
  153. A.S. Seyed-Razavi, I.K. Snook, A.S. Barnard, Surface area limited model for predicting anisotropic coarsening of facetted nanoparticles. Cryst. Growth & Des. 11 (2011) 158 – 165
  154. A.S. Barnard, Useful equations for modeling the relative stability of common nanoparticle morphologies. Comp. Phys. Comm. 182 (2011) 11 – 13
  155. A.S. Barnard, I.K. Snook, Size- and shape-dependence of the graphene to graphane transformation in the absence of hydrogen. J. Mater. Chem. 20 (2010) 10459 – 10464
  156. A.S. Barnard, C.A. Feigl, S.P. Russo, Morphological and phase stability of zinc blende, amorphous and mixed core-shell ZnS nanoparticles. Nanoscale, 2 (2010) 2294 – 2301
  157. L.Y. Chang, A.S. Barnard, L.C. Gontard, R. Dunin-Borkowski, Resolving the structure of active sites on platinum catalytic nanoparticles. Nano Lett. 10 (2010) 3073 – 3076
  158. A.S. Barnard, Modelling of nanoparticles: Approaches to morphology and evolution. Rep. Prog. Phys. 73 (2010) 086502
  159. C.A. Feigl, S.P. Russo, A.S. Barnard, Safe, stable and effective nanotechnology: Phase mapping of zinc sulfide nanoparticles. J. Mater. Chem. 20 (2010) 4971 – 4980
  160. C. Bradac, T. Gaebel, N.N. Naidoo, M.J. Sellars, J. Twamley, L. Brown, A.S. Barnard, T. Plakhotnik, A.V. Zvyagin, J.R. Rabeau, Observation and control of blinking nitrogen vacancy centres in discrete nanodiamonds. Nat. Nanotechnol. 5 (2010) 345 – 349
  161. A.S. Barnard, One-to-One comparison of sunscreen efficacy, aesthetics and potential nanotoxicity. Nat. Nanotechnol. 5 (2010) 271 – 274
  162. A.S. Barnard, I.K. Snook, Transformation of graphene into graphane in the absence of hydrogen. Carbon 48 (2010) 981 – 986
  163. A.S. Seyed-Razavi, I.K. Snook, A.S. Barnard, Origin of Nanomorphology: Does a complete theory of nanoparticle evolution exist? J. Mater. Chem. 20 (2010) 416 [Cover]
  164. A.S. Barnard, Shape-dependent confinement of the nanodiamond band-gap. Cryst. Growth & Des. 5 (2009) 4860 – 4863
  165. C. Bradac, T. Gaebel, N. Naidoo, J.R. Rabeau, A.S. Barnard, Prediction and measurement of the size-dependent stability of fluorescence in diamond over the entire nanoscale. Nano Lett. 9 (2009) 3555 – 3564
  166. A.S. Barnard, Computational strategies for predicting the risks associated with nanotechnology. Nanoscale 1, (2009) 89 – 95
  167. A.S. Barnard, Diamond standard in diagnostics: Nanodiamond biolabels make their mark. Analyst 134 (2009) 1751 – 1764 [Cover]
  168. A.S. Barnard, Partnerships for sustainable nanotechnology. Materials Today 12 (2009) 47 [Cover]
  169. A.S. Barnard, N. Young, A.I. Kirkland, M.A. van Huis, H. Xu, Nanogold: A quantitative phase map. ACS Nano 3 (2009) 1431 – 1436
  170. A.S. Barnard, S.P Russo, Modeling nanoscale FeS2 formation in sulphur rich conditions. J. Mater. Chem. 19 (2009) 3389 – 3394
  171. A.S. Barnard, How can ab initio simulations address risks in nanotech? Nat. Nanotechnol. 4 (2009) 332 – 335
  172. A.S. Barnard, S.P Russo, Morphological stability of pyrite FeS2 nanocrystals in water. J. Phys. Chem. C, 113 (2009) 5376
  173. A.S. Barnard, Modelling the relative stability of carbon nanotubes exposed to environmental adsorbates and air. J. Phys: Condens. Matter, 21 (2009) 144205
  174. J.E. Hales, A.S. Barnard, Thermodynamic stability and electronic structure of small carbon nitride nanotubes. J. Phys: Condens. Matter, 21 (2009) 144203
  175. A.S. Barnard, S.P Russo, Modeling the environmental stability of FeS2 nanorods, using lessons from biomineralization, Nanotech. 20 (2009) 115702
  176. A.S. Barnard, I.I. Vlasov, V.G. Ralchenko, Predicting the distribution and stability of photoactive defect centers in nanodiamond biomarkers. J. Mater. Chem. 19 (2009) 360
  177. I.I. Vlasov, A.S. Barnard, V.G. Ralchenko, O.I. Lebedev, M.V. Kanzuba, A.V. Saveliev, V.I. Konov, E. Goovaerts, Nanodiamond photo emitters based on strong luminescence from silicon-vacancy defects. Adv. Mater. 21 (2008) 808
  178. A.S. Barnard, H. Xu, An environmentally sensitive phase map of titania nanocrystals. ACS Nano 2 (2008) 2237 – 2242
  179. A.S. Barnard, M. Sternberg, Vacancy induced structural changes in diamond nanoparticles. J. Comput. Theo. Nanosci. 5 (2008) 2089
  180. A.S. Barnard, G. Opletal, I.K. Snook, S.P. Russo, Ideality versus reality: The emergence of the Chui-icosahedron. J. Phys. Chem. C, 112 (2008) 14848
  181. A.S. Barnard, Self-assembly in nanodiamond agglutinates. J. Mater. Chem. 18 (2008) 4038 – 4041
  182. A.S. Barnard, A.I. Kirkland, Combining theory and experiment in determining the surface chemistry of nanocrystals. Chem. Mater. 20 (2008) 5460
  183. A. Fiori, S. Orlanducci, V. Sessa, E. Tamburri, F. Toschi, M.L. Terranova, A. Ciorba, M Rossi, M. Lucci, A.S. Barnard, Hybrid carbon nanotube/nanodiamond structures as electron emitters for cold cathodes. J. Nanosci. Nanotech. 8, (2008) 1989
  184. A.S. Barnard, I.K. Snook, Thermal stability of graphene edge structure and graphene nanoflakes. J. Chem. Phys. 128 (2008) 094707
  185. A.S. Barnard, Modelling the shape, orientation and stability of twinned gold nanorods. J. Phys. Chem. C 112 (2008) 1385
  186. A.S. Barnard, M. Sternberg, Crystallinity and surface electrostatics in diamond nanoparticles. J. Mater. Chem. 17 (2007) 4811 – 4819
  187. A.S. Barnard, H. Xu, First principles and thermodynamic modeling of CdS surfaces and nanorods. J. Phys. Chem. C, 111 (2007) 18112
  188. A.S. Barnard, M. Sternberg, Can we predict the location of impurities in diamond nanoparticles? Diamond Relat. Mater. 16 (2007) 2078
  189. A.S. Barnard, S.P. Russo, Shape and thermodynamic stability of pyrite FeS2 nanocrystals and nanorods. J. Phys. Chem. C, 111 (2007) 11742
  190. A.S. Barnard, L.A. Curtiss, Modeling the preferred shape, orientation and aspect of gold nanorods. J. Mater. Chem. 17 (2007) 3315
  191. A.S. Barnard, I.K. Snook, S.P. Russo, Bonding and structure of BxNy armchair nanotubes (x,y = 1,2). J. Mater. Chem. 17 (2007) 2892
  192. H.J. Fan, A.S. Barnard, M. Zacharias, ZnO nanowires and nanobelts: shape selection and thermodynamic modeling. Appl. Phys. Lett. 90 (2007) 143116
  193. A.S. Barnard, M. Sternberg, Mapping the location of nitrogen in diamond nanoparticles. Nanotech. 18, (2007) 025702
  194. A.S. Barnard, A thermodynamic model for the shape and stability of twinned nanostructures. J. Phys. Chem. B, 110 (2006) 24498 – 24504
  195. A.S. Barnard, H. Xu, X. Li, N. Pradham, X. Peng, Modeling the formation of high aspect CdSe quantum wires: Axial-growth versus oriented-attachment mechanisms. Nanotech. 17 (2006) 5707
  196. A.S. Barnard, M. Sternberg, Substitutional boron in nanodiamond, bucky-diamond and nanocrystalline diamond grain boundaries. J. Phys. Chem. B, 110 (2006) 19307
  197. A.S. Barnard, L.A. Curtiss, Predicting the shape and structure of face centered cubic gold nanocrystals smaller than 3 nm. ChemPhysChem, 7 (2006) 1544
  198. A.S. Barnard, R.R. Yeredla, H. Xu, Modelling the effect of particle shape on the phase stability of ZrO2 nanoparticles. Nanotech. 17 (2006) 3039
  199. A.S. Barnard, Thermodynamic modeling of hydrogen adsorption on carbon nanotubes during CVD growth. Chem. Vapour Depos. 12 (2006) 388
  200. A.S. Barnard, S. Erdin, Y. Lin, P. Zapol, W. Halley, Modeling the structure and electronic properties of TiO2 nanoparticles. Phys. Rev. B, 73 (2006) 205405
  201. A.S. Barnard, Nano-hazards: Knowledge is our first defence. Nat. Mater. 5 (2006) 245 – 248
  202. A.S. Barnard, Theory and modeling of nanocarbon phase stability. Diamond & Relat. Mater. 15 (2006) 285
  203. A.S. Barnard, Using theory and modelling to investigate shape at the nanoscale. J. Mater. Chem. 16 (2006) 813 [Cover]
  204. A.S. Barnard, Y. Xiao, Z. Cai, Modelling the shape and orientation of ZnO nanobelts. Chem. Phys. Lett. 419 (2006) 313
  205. A.S. Barnard, X.M. Lin, L.A. Curtiss, Equilibrium morphology of face centered cubic gold nanoparticles >3 nm, and the shape changes induced by temperature. J. Phys. Chem. B 109 (2005) 24465
  206. A.S. Barnard, M. Sternberg, Substitutional nitrogen in nanodiamond and bucky-diamond particles. J. Phys. Chem. B, 109 (2005) 17107
  207. A.S. Barnard, Z. Saponjic, D. Tiede, T. Rajh, L.A. Curtiss, Multi-scale modeling of titanium dioxide: Controlling shape with surface chemistry. Rev. Adv. Mater. Sci. 10 (2005) 21 – 27
  208. A.S. Barnard, L.A. Curtiss, Computational nano-morphology: Modeling shape as well as size. Rev. Adv. Mater. Sci. 10 (2005) 105 – 109
  209. A.S. Barnard, S.P. Russo, I.K. Snook, Simulation and bonding of dopants in nanocrystalline diamond. J. Nanosci. Nanotech. 5 (2005) 1395 – 1407
  210. A.S. Barnard, S.P. Russo, I.K. Snook, Modeling of stability and phase transformations in quasi-zero dimensional nanocarbon systems. J. Comput. Theo. Nanosci. 2 (2005) 180 – 201 [Cover]
  211. A.S. Barnard, L.A. Curtiss, Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. Nano Lett. 5 (2005) 1261 – 1266
  212. M.L. Terranova, S. Orlanducci, A. Fiori, E. Tamburri, V. Sessa, M. Rossi, A.S. Barnard, Controlled evolution of carbon nanotubes coated by nanodiamond: The realization of a new class of hybrid nanomaterials. Chem. Mater. 17 (2005) 3214
  213. A.S. Barnard, S.P. Russo, I.K. Snook, First principles modelling of dopants in C29 and C29H24 nanodiamond. J. Phys. Chem. B 109 (2005) 11991
  214. A.S. Barnard, P. Zapol, L.A. Curtiss, Anatase and rutile surfaces with adsorbates representative of acidic and basic conditions. Surf. Sci. 582 (2005) 173 – 188
  215. S.H.N Lim, D.G. McCulloch, M.M.M. Bilek, D.R. McKenzie, S.P. Russo, A.S. Barnard, A. Torpy, Characterisation of cathodic arc deposited titanium aluminium nitride films prepared using plasma immersion ion implantation. J. Phys: Condensed. Matter 17, (2005) 2791
  216. I.K. Snook, A.S. Barnard, S.P. Russo, R. Springall, and J. Srbinovsky, Simulating nano-carbon materials. Molec. Simulat. 31, (2005) 495
  217. Z.V. Saponjic, N. Dimitrijevic, D. Tiede, A. Goshe, X. Zuo, L. Chen, A.S. Barnard, P. Zapol, L.A. Curtiss, T. Rajh, Shaping nanoscale architecture through surface chemistry. Adv. Mater. 17, (2005) 965
  218. A.S. Barnard, S.P. Russo, I.K. Snook, Visualization of hybridization in nanocarbon systems. J. Comput. Theo. Nanosci. 2, (2005) 68
  219. A.S. Barnard, M.L. Terranova, M. Rossi, Density functional study of H-induced defects as nucleation sites in hybrid carbon nanomaterials. Chem. Mater. 8, (2005) 527
  220. A.S. Barnard, P. Zapol, L.A. Curtiss, Modeling the morphology and phase stability of TiO2 nanocrystals in water. J. Chem. Theo. Comp. 1 (2005) 107
  221. A.S. Barnard, Shape and energetics of TiN nanoparticles. J. Comput. Theo. Nanosci. 1 (2004) 334
  222. A.S. Barnard, P. Zapol, Predicting the energetics, phase stability and morphology evolution of faceted and spherical anatase nanocrystals. J. Phys. Chem. B, 108 (2004) 18435 – 18440
  223. A.S. Barnard, P. Zapol, Effects of particle morphology and surface hydrogenation on the phase stability TiO2 at the nanoscale. Phys. Rev. B, 70 (2004) 235403
  224. A.S. Barnard, P. Zapol, A model for the phase stability of arbitrary nanoparticles as a function of size and shape. J. Chem. Phys. 121 (2004) 4276 – 4283
  225. A.S. Barnard, Structural properties of diamond nanowires: Theoretical predications and experimental progress. Rev. Adv. Mater. Sci. 6 (2004) 94 – 119
  226. A.S. Barnard, P. Bath, S.P. Russo, I.K. Snook, A Monte Carlo study of surface reconstruction in (100) and (111) diamond surfaces and nanodiamond. Molec. Simulat. 30, (2004) 1
  227. A.S. Barnard, I.K. Snook, Phase stability of nanocarbon in one-dimension: Nanotubes versus diamond nanowires. J. Chem. Phys. 120 (2004) 3817
  228. A.S. Barnard, S.P. Russo, I.K. Snook, Bucky-wires and the instability of the diamond (111) surface in one-dimension. J. Nanosci. Nanotech. 2 (2004) 151
  229. A.S. Barnard, S.P. Russo, I.K. Snook, From nanodiamond to diamond nanowires: Structural properties affected by dimension. Phil. Mag. 84 (2004) 899
  230. A.S. Barnard, S.P. Russo, I.K. Snook, Structural relaxation and relative stability of nanodiamond morphologies. Diamond & Relat. Mater. 12 (2004) 1867
  231. A.S. Barnard, S.P. Russo, I.K. Snook, Electronic band gaps for diamond nanowires. Phys. Rev. B, 68 (2003) 235407
  232. A.S. Barnard, S.P. Russo, I.K. Snook, First principles investigations of diamond ultrananocrystals. Int. J. Mod. Phys. B, 17 (2003) 3865
  233. A.S. Barnard, S.P. Russo, I.K. Snook, Ab initio modelling of diamond nanowire structures. Nano Lett. 3 (2003) 1323 [Cover]
  234. A.S. Barnard, S.P. Russo, I.K. Snook, Coexistence of bucky-diamond with the nanodiamond and fullerene phases. Phys. Rev. B, 68 (2003) 73406
  235. A.S. Barnard, S.P. Russo, Structure and energetics of single-walled armchair and zigzag silicon nanotubes. J. Phys. Chem. B, 107 (2003) 7577
  236. A.S. Barnard, S.P. Russo, I.K. Snook, Surface structure of cubic diamond nanowires. Surf. Sci. 538 (2003) 204
  237. A.S. Barnard, S.P. Russo, I.K. Snook, Ab initio modelling of B and N in C29 and C29H24 nanodiamond. J. Chem. Phys. 118, (2003) 10725
  238. A.S. Barnard, S.P. Russo, I.K. Snook, Ab initio modelling of dopants in diamond nanowires: II. Phil. Mag. 83 (2003) 2311
  239. A.S. Barnard, S.P. Russo, I.K. Snook, Ab initio modelling of boron and nitrogen in diamond nanowires. Phil. Mag. 83 (2003) 2301
  240. A.S. Barnard, S.P. Russo, I.K. Snook, Size dependent phase stability of carbon nanoparticles: Nanodiamond versus fullerenes. J. Chem. Phys. 118 (2003) 5094
  241. A.S. Barnard, S.P. Russo, I.K. Snook, Ab initio modelling of band states in doped diamond. Phil. Mag. 83, (2003) 1163
  242. S.P. Russo, A.S. Barnard, I.K. Snook, Hydrogenation of nanodiamond surfaces: Structure and effects on crystalline stability. Surf. Rev. Lett. 10 (2003) 233
  243. A.S. Barnard, S.P. Russo, I.K. Snook, Ab initio modelling of stability of nanodiamond morphologies. Phil. Mag. Lett. 83 (2003) 39 – 45
  244. A.S. Barnard, S.P. Russo, I.K. Snook, Comparative Hartree-Fock and density functional theory study of cubic and hexagonal diamond. Phil. Mag. B, 82 (2002) 1767
  245. A.S. Barnard, S.P. Russo, Development of an improved Stillinger-Weber potential for tetrahedral carbon using ab initio (Hartree-Fock and MP2) methods. Mol. Phys. 100 (2002) 1517
  246. A.S. Barnard, S.P. Russo, G.I. Leach, Nearest neighbour considerations in Stillinger-Weber type potentials for diamond. Molec. Simulat. 28 (2002) 761

Refereed Conference Proceedings

  1. T. Lui, A.S. Barnard, Shapley based residual decomposition for instance analysis. Proceedings of the 40th International Conference on Machine Learning, ICML (2023)
  2. S. Li, A.S. Barnard, Variance tolerance factors for interpreting all good neural networks. Proceeding of the International Joint Conference on Neural Networks, IJCNN (2023)
  3. Y. Xu, M. De La Pierre, A.S. Barnard, G.M.J. Barca, A machine learning approach towards runtime optimisation of matrix multiplication. Proc .37th IEEE International Parallel \& Distributed Processing Symposium (2023)
  4. S. Li,  J. Ting, A.S. Barnard, Optimization-free inverse design of high-dimensional nanoparticle electrocatalysts using multi-target machine learning, Lecture Notes in Computer Science, 13351 (2022) 307 – 318
  5. S. Li, A.S. Barnard, Optimization-free inverse design of high-dimensional nanoparticle electrocatalysts using multi-target machine learning, Proc. AiCHE, 2021
  6. A. Parker, A. Barnard, Avoiding biases and maximising efficiency with active learning directed simulations of small molecule surface binding, Proc. International Conference on Nanostructured Materials - NANO 2020 (2020) 41
  7. S.L.Y. Chang, D. Williams, M. Roldan Gutierrez, C. Dwyer, A. Barnard, Aggregation behavior of detonation nanodiamond in solution, Micros. Microanal. 25 (2019) 1740 – 1741
  8. B. Sun, A. Barnard, From process to properties: Correlating synthesis conditions, structural disorder and the catalytic performance of metallic nanoparticles, Papers of the American Chemical Society, (2018) 255
  9. S.L.Y Chang, C. Dwyer, K. March, M. Mermoux, N. Nunn, O. Shenderova, E. Osawa, A.S. Barnard, Atomic and electronic structures of functionalized nanodiamond particles, Micros. Microanal. 23 (2017) 2270 – 2271
  10. S.L.Y. Chang, A.S. Barnard, C. Dwyer, C.B. Boothroyd, E. Osawa, R.J. Nicholls, Surface and point defect measurements of detonation nanodiamond using combined Cs-Cc corrected TEM and ab initio calculations, Microscopy and Microanalysis 22 (2016) 1392 – 1393
  11. H. Barron, G. Opletal, R. Tilley, A. Barnard, Dynamic Evolution of Catalytic Active Sites on Platinum Nanoparticles, Proceedings of the International Conference on Nanoscience and Nanotechnology (2016) 7 – 11
  12. M. Fernandez, C. Watkins, A. Barnard Recognition of High-performing Nanoporous Materials for Xe/Kr Separation using Convolutional Neural Networks. Proceedings of the International Conference on Nanoscience and Nanotechnology, (2016) 7 – 11
  13. E. Swann, M. Per, A. Barnard, M. Coote, Hydrogen Abstraction with Quantum Monte Carlo: Quantifying energetic reaction barriers with stochastic methods. Proceedings of the International Conference on Nanoscience and Nanotechnology (2016) 7 – 11
  14. S.L.Y. Chang, C. Dwyer, A.S. Barnard, R. Hocking, Atomic-scale compositional distribution in PtRu nanocatalysts, Proceedings of the 10th Asia-Pacific Microscopy Conference, (2012) 5 – 9
  15. S.L.Y. Chang, A.S. Barnard, R. Hocking, C. Dwyer, Compositional distribution of bimetallic nanocatalysts at atomic scale, Proceedings of the International Conference on Nanoscience and Nanotechnology, (2012) 5 – 9
  16. A.S. Barnard, Mapping the morphology of noble metal nanoparticles, Proceedings of the International Conference on Nanoscience and Nanotechnology (2012) 5 – 9
  17. H. Xu, A.S. Barnard, Nano-minerals: Size-dependent crystal structure, shape and chemical reactivity changes, Geochimica et Cosmochimica Acta Supplement 72 (2008) A1045
  18. H. Xu, A.S. Barnard, Crystals size and surface chemistry dependent phase diagram for nanocrystals of rutile and anatase: Experimental studies and computer modeling, Proceedings of the American Geophysical Union Fall Meeting (2008) 15-19
  19. A.S. Barnard, N.A. Marks, S.P. Russo, I.K. Snook, Hydrogen stabilization of {111} nanodiamond. Mat. Res. Soc. Symp. Proc. 740 (2003) 69-74

Books & Book Chapters

  1. A.S. Barnard, Insights into Nanodiamond from Machine Learning, in: Novel Aspects of Diamond, Third Edition, S. Mandal and N. Yang (Eds.), Springer (2023)
  2. H. Guo, A.S. Barnard, Thermodynamics of Iron Oxides and Oxyhydroxides in Different Environments, in: Iron Oxides: From Nature to Applications, Third Edition, D. Faivre (Ed.), John Wiley & Sons Ltd, UK (2016)
  3. L. Lai, A.S. Barnard, Molecular and analytical modeling of nanodiamond for drug delivery applications, in: Computational Pharmaceutics: Application of Molecular Modeling in Drug Delivery, D. Ouyang and S.C. Smith (Eds.), John Wiley & Sons Ltd, UK (2015)
  4. A.S. Barnard, Distribution, Diffusion and Concentration of Defects in Colloidal Diamond, in: Nanodiamond, O. A. Williams (Eds.), Royal Society Chemistry, UK (2014)
  5. A.S. Barnard, Thermodynamic Cartography and Structure/Property Mapping of Potential Nanohazards, in: Towards Efficient Designing of Safe Nanomaterials, J. Leszczynski, T. Puzyn (Eds.), Royal Society Chemistry, UK (2012)
  6. A.S. Barnard, Stability of Diamond at the Nanoscale, Chapter 1, in: Ultrananocrystalline Diamond: Synthesis, Properties and Applications, Second Edition, D.M. Gruen, O.A. Shenderova (Eds.), Elsevier, UK (2012)
  7. A.S. Barnard, Modelling Gas Adsorption on Carbon Nanotubes, in: Carbon Nanostructure for Gas Adsorption, M.L. Terranova and M. Rossi (Eds.), Pan Stanford Publishing Inc., Singapore (2012)
  8. A.S. Barnard, Modeling Nanomorphology in Noble Metal Nanoparticles: Thermodynamic Cartography, in: Complex-Shaped Metal Nanostructures, T. K. Sau and A. Rogach (Eds.), Wiley – VCH, Germany (2011)
  9. Natures Nanostructures, H. Guo and A.S. Barnard, (Eds.) Pan Stanford Publishing Inc., Singapore (2011)
  10. I.K. Snook, A.S. Barnard, Graphene Nano-Flakes and Nano-Dots: Theory, Experiment and Applications, Chapter 13 in: Physics and Applications of Graphene - Theory, S. Mikhailov (Ed.) InTech, Croatia (2011)
  11. A.S. Barnard, Scientific Strategies for Predicting Risks and Hazards Associated with Nanomaterials, in: Advances in Nanotechnology, F. Columbus (Ed.) Nova Science Publishers, USA (2010)
  12. W. K. Liu, A. Adnan, A. Kopacz, M. Hallikainen, D. Ho, R. Lam, J.Lee, T. Belytschko, G. Schatz, Y. Tzeng, Y.-J. Kim, S. Baik, M. K. Kim, T. Kim, J. Lee, E.-S. Hwang, S. Im, E. Osawa, A.S. Barnard, H.-C. Chang, C.-C. Chang, Design of Nanodiamond Based Drug Delivery Patch for Cancer Therapeutics and Imaging Applications, in: Nanodiamonds: Applications in Biology and Nanoscale Medicine, D. Ho (Ed.), Springer Science+Business Media. Inc. USA (2010)
  13. A.S. Barnard, Size dependent phase transitions and phase reversal at the nanoscale, Chapter 5, in: Oxford Handbook of Nanotechnology: Volume II, A. Narlikar, and Y.Y. Fu (Eds.), Oxford University Press, UK (2009) pp. 213 – 231
  14. O.A. Shenderova, A.S. Barnard and D.M. Gruen, Carbon Family at the Nanoscale, Chapter 1, in: Ultrananocrystalline Diamond: Synthesis, Properties and Applications, D.M. Gruen, O.A. Shenderova (Eds.), William Andrew Publishing (2005)
  15. A.S. Barnard, Stability of Nanodiamond, Part 2, in: Ultrananocrystalline Diamond: Synthesis, Properties and Applications, D.M. Gruen, O.A. Shenderova (Eds.), William Andrew Publishing (2005)
  16. A.S. Barnard, From Nanodiamond to Nanowires, Chapter 3, in: Proceedings of the NATO/OTAN Advanced Research Workshop on Ultrananocrystalline Diamond, D.M. Gruen, O.A. Shenderova and A.Ya. Vul (Eds.), Kluwer (2005)
  17. A.S. Barnard, S.P. Russo, I.K. Snook, Modeling of Stability and Phase Transformations in Zero- and One-Dimensional Nanocarbon Systems, Chapter 36, in: Handbook of Theoretical and Computational Nanotechnology, M. Rieth and W. Schommers (Eds.), American Scientific Publishers (2005)

Published Datasets

  1. A. Barnard, G. Opletal, 2023, Fullerene Data Set, v1. CSIRO Data Collection, https://doi.org/10.25919/dxd2-d239
  2. A. Barnard, G. Opletal, 2023, Palladium Nanoparticle Data Set, v2. CSIRO Data Collection. https://doi.org/10.25919/epxd-8p61
  3. K. Lu, J. Ting, A. Barnard, G. Opletal,  2023, AuPdPt Nanoparticle Data Set, v1. CSIRO. Data Collection. https://doi.org/10.25919/psvw-am47
  4. J. Ting, A. Barnard, G. Opletal, 2023, AuCo Nanoparticle Data Set, v2. CSIRO Data Collection. https://doi.org/10.25919/7h3x-1343
  5. J. Ting, A. Barnard, G. Opletal, 2023, AuPd Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/v0r5-sw08
  6. J. Ting, A. Barnard, G. Opletal, 2023, AuPt Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/7zh9-3f67
  7. J. Ting, A. Barnard, G. Opletal, 2023, CoAu Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/991j-hg07
  8. J. Ting, A. Barnard, G. Opletal, 2023, CoPd Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/em3a-9a89
  9. J. Ting, A. Barnard, G. Opletal, 2023, CoPt Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/0bs4-sn79
  10. J. Ting, A. Barnard, G. Opletal, 2023, PdAu Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/6ajg-1275
  11. J. Ting, A. Barnard, G. Opletal, 2023, PdCo Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/az9t-vr97
  12. J. Ting, A. Barnard, G. Opletal, 2023, PdPt Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/qced-2e85
  13. J. Ting, A. Barnard, G. Opletal, 2023,  PtAu Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/tdnv-jp30
  14. J. Ting, A. Barnard, G. Opletal, 2023, PtCo Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/jzh8-rd31
  15. J. Ting, A. Barnard, G. Opletal,  2023, PtPd Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/9sz9-3a85
  16. A. Barnard, B. Motevalli Soumehsaraei, B. Sun, 2019, Periodic Graphene Oxide Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/5e30b45f9852c 
  17. A. Barnard, B. Motevalli Soumehsaraei, B. Sun, L. Lai, 2019, Neutral Graphene Oxide Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/5e30b44a7c948
  18. A. Barnard, B. Motevalli Soumehsaraei, B. Sun, L. Lai, 2019, Anionic Graphene Oxide Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/5e30a9cf118cf
  19. A. Barnard, B. Motevalli Soumehsaraei, B. Sun, L. Lai, 2019, Cationic Graphene Oxide Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/5e30a9cf90439
  20. A. Barnard, G. Opletal, 2019, Copper Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/5e30ba386311f
  21. A. Barnard, G. Opletal, 2019, Ruthenium Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/5e30b8fa67484
  22. A. Barnard, G. Opletal, 2019, Disordered Silver Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/5e30b5231c669
  23. A. Barnard, G. Opletal, 2019, Nickel Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/5e30b73382a79
  24. A. Barnard, G. Opletal, 2019, Gold Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/5d395ef9a4291
  25. A. Barnard, G. Opletal, 2019, Platinum Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/5d3958d9bf5f7
  26. A. Barnard, B. Motevalli Soumehsaraei, 2019, Graphene Oxide Nanoflake Archetypes and Prototypes, v1. CSIRO Data Collection. https://doi.org/10.25919/5d1304152364a
  27. A. Barnard, 2018, Twinned Nanodiamond Data Set, v1. CSIRO Data Collection, https://doi.org/10.25919/5ba82cf09627f
  28. A. Barnard, 2018, Graphene Oxide Structure Set, v1. CSIRO Data Collection, https://doi.org/10.25919/5b91c8b150944
  29. A. Barnard, B. Sun, B. Motevalli Soumehsaraei, G. Opletal, 2017, Silver Nanoparticle Data Set, v3. CSIRO Data Collection, https://doi.org/10.25919/5d22d20bc543e
  30. A. Barnard, B. Sun, B. Motevalli, G. Opletal, 2017, Silver Nanoparticle Structure Set, v3. CSIRO Data Collection,https://doi.org/10.25919/5d22d20bc543e
  31. E. Swann, M. Fernandez Llamosa, A. Barnard, M. Coote, 2017, CMolsC-org Quantum Chemical Test Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/58bcf3005e549
  32. E. Swann, M. Fernandez Llamosa, A. Barnard, M. Coote, 2017, CMolsC-1 Quantum Chemical Test Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/58bcf1565950a
  33. E. Swann, M. Fernandez Llamosa, A. Barnard, M. Coote, 2017, CMolsT-org Quantum Chemical Test Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/58bcf2cf53bbe
  34. E. Swann, M. Fernandez Llamosa, A. Barnard, M. Coote, 2017, CMolsT-1 Quantum Chemical Test Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/58bcf21ca85b6
  35. A. Barnard, 2016, Nanodiamond Data Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/571F076D050B1
  36. A. Barnard, B. Sun, H.Q. Shi, 2016, Graphene Nanoflake Data Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/57998CC4D7891
  37. A. Barnard, H. Wilson, 2015, Silicon Quantum Dot Data Set, v2. CSIRO Data Collection, http://doi.org/10.4225/08/5721BB609EDB0
  38. A. Barnard, 2014, H. Wilson, Germanium Nanoparticle Structure Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/546A9FB866B37
  39. A. Barnard, 2014, H. Wilson, Silicon Nanoparticle Structure Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/546AA009190C4
  40. A. Barnard, 2014, Diamond Nanoparticle Structure Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/546A9F79EC99C
  41. A. Barnard, 2014, Graphene Structure Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/541F61EC81EE3
  42. A. Barnard, 2014, Carbide Nanotube Structure Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/541F61B0666C1
  43. A. Barnard, 2014, Boron Nitride Nanotube Structure Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/541F6178B7905

Published Software

  1. A. Parker, A. Barnard, 2020, Hunt and Gather. v1. CSIRO Software Collection. https://doi.org/10.25919/hvkk-k494
  2. A. G. Opletal, M. Golebiewski, A. Barnard, 2020, Simulated Nanostructure Assembly with Protoparticles (SNAP), v1. CSIRO Software Collection. https://doi.org/10.25919/5e5c662a0597e
  3. A. Barnard, A. Parker, 2019, Iterative Label Spreading, v1. CSIRO Software Collection. https://doi.org/10.25919/5d806280b91a9
  4. B. Motevalli Soumehsaraei, A. Barnard, 2019, Archetypal Analysis Package, v1. CSIRO Software Collection. https://doi.org/10.25919/5d3958889f7ff
  5. B. Motevalli Soumehsaraei, A. Barnard, 2019, QuickThermo, v1. CSIRO Software Collection. https://doi.org/10.25919/5d39589c523d4
  6. G. Opletal, A. Barnard, 2018, PorosityPlus, v1. CSIRO Software Collection. https://doi.org/10.25919/5b8e0ffa8afaa

 

 

2022 Member of the Order of Australia (AM)
2022 Senior Member adn Certified Professional, Australian Computer Society, AUST
2019 AMMA Medal - Association of Molecular Modellers of Australasia
2018 Fellow - Royal Society of Chemistry (FRSC), UK
2018 100 Woman of Chemistry - Royal Society of Chemistry, UK
2017 Woman of Achievement - Black & White Foundation, Vision Australia, AUST
2014 Feynman Prize in Nanotechnology (Theory) - Foresight Institute, Palo Alto, USA
2014 ACS Nano Lectureship (Asia-Pacific) - American Chemical Society, USA
2012 Fellow - Australian Institute of Physics (FAIP), AUST
2010 Distinguished Lecturer - IEEE, South Australia, AUST
2010 UNSW Eureka Prize for Scientific Research - Australian Museum, AUST
2010 Frederick White Prize - Australian Academy of Science, AUST
2009 Chief's Science Research Award - CSIRO Materials Science & Engineering, AUST
2009 Malcolm McIntosh Prize for Physical Scientist of the Year - Prime Minister's Prizes for Science, Department of Innovation, Industry, Science & Research, AUST
2009 Mercedes-Benz Australian Environmental Research Award - Banksia Foundation, AUST
2009 Future Summit Leadership Award - Australian Davos Connection, AUST
2009 Young Scientist Prize in Computational Physics - International Union of Pure and Applied Physics
2009 J G Russell Award - Australian Academy of Science, AUST

2008 Alumnus of the Year Award - RMIT University, AUST

2008 Queen Elizabeth II Fellowship - Australia Research Council, AUST

2008 L'Oreal Australia "For Women in Science" Award - L'Oreal - UNESCO, AUST

2005 Extraordinary Junior Research Fellowship - The Queen's College, Oxford, UK

2005 Violette \& Samuel Glasstone Fellowship - University of Oxford, UK

2004 Innovation Award (Student Category) - RMIT University, AUST

2004 University Research Prize - RMIT University, AUST

2003 CNM Distinguished Postdoctoral Fellowship - Argonne National Laboratory (ANL), USA

 

 

Boards

  • Strategic Advisor, Board of Directors, Pawsey Supercomputing Research Centre, AUST (2023 – current)
  • Independent Director, Board of Directors, New Zealand eScience Infrastructure (NeSI), NZ (2019 – current)
  • Advisory Board, Our Health in Our Hands (OHIOH), ANU, AUST (2019 – current)
  • Advisory Board, ChoiceFlows Inc., North Carolina, USA (2019 – current)
  • External Advisory Board, AIBN Centre for Theoretical and Computational Molecular Science (CTCMS), University of Queensland, AUST (2014 – current)
  • Academic Board, Australian National University (2021 – 2022)
  • Scientific Advisory Board, Centre for Biomedical Data Visualisation (BioViS), Garvan Institute, AUST (2017 – 2021)
  • Course Advisory Board (Masters program), Department of Chemistry and Physics, La Trobe University, AUST (2015 – 2017)
  • External Advisory Board, Centre for the Study of Choice (CenSoC), University of Technology - Sydney (UTS), AUST (2011 – 2013)

Panels

  • College of Assessors, New Zealand Ministry of Business, Innovation & Employment (MBIE), NZ (2020 – current)
  • Expert Panel, Competitive Research Programme, National Research Foundation, Singapore (2019 – current)
  • Assessment Panel, New Zealand–Singapore Data Science Research Programmes, NZ Ministry of Business, Innovation & Employment and Singapore Data Science Consortium (2020)
  • Selection Panel, Frederick White Medal, Australian Academy of Science  (2019 – current)
  • Assessment Panel, New Zealand Data Science Research Programmes (NZ$49mil investment), Ministry of Business, Innovation & Employment, NZ (2019)
  • Mid-term Review Panel, Centres of Research Excellence (CoREs, 10 in total), Tertiary Education Commission, NZ (2017)
  • Jury, L'Oréal For Women in Science Fellowships, AUST/NZ (2016 – 2020)
  • Panel of Expert Advisors (Physical Sciences), The Nature Index, Nature Publishing Group, UK (2013 – 2020)
  • Panel of Judges, Eureka Prize for Early Career Research, Australian Museum, AUST (2011 – 2016) 

Committees

  • Chair, Jubilee Joint Fellowship Program, School of Computing, Australian National University, AUST (2021 – current)
  • Chair, Pioneering Women Program, School of Computing, Australian National University, AUST (2021 – current)
  • Chair, Tenure Track Recruitment Committee & Panel, School of Computing, Australian National University, AUST (2021 – current)
  • Program Committee, Pawsey Centre for Extreme Scale Readiness (PaCER), AUST (2020 – current)
  • Chair, Higher Degree Scholarship Committee, School of Computing, Australian National University, AUST (2021 – 2023)
  • Chair, Australian Leadership Computing Grants (ALCG), National Computational Infrastructure, AUST (2020 – 2023)
  • Local Promotions Committee, College of Engineering and Computer Science, Australian National University, AUST (2020)
  • Deputy Chair, Change Management Group, Pawsey Supercomputing Centre Capital Refresh ($70mil NCRIS investment), AUST (2018 – 2022)
  • Chair, User Reference Group, Pawsey Supercomputing Centre Capital Refresh ($70mil NCRIS investment), AUST (2018 – 2020)
  • Materials Research Society (MRS) Award Nominations Subcommittee, USA (2019 – 2020)
  • Chair, National Computational Merit Allocation Scheme (NCMAS), AUST (2018 – 2019)
  • Procurement Steering Committee, National Computational Infrastructure ($70mil NCRIS investment), AUST (2018 – 2019)
  • Data61 Executive Science & Technology Sub-Committee, CSIRO, AUST (2017 – 2018)
  • Pawsey Supercomputing Centre Partner Allocation Scheme, AUST (2015 – 2019)
  • Data61 Rewards (Promotions) Committee, CSIRO, AUST (2017 – 2018)
  • Data61 Scholarship Committee (VIC/TAS/WA, NSW/SA), Data61, CSIRO, AUST (2016 – 2018)
  • Athena Early Adopters Committee, Pawsey Supercomputing Centre, AUST (2017)
  • Deputy Chair, National Computational Merit Allocation Scheme (NCMAS), AUST (2016 – 2017)
  • Pawsey Supercomputing Uptake Strategy Group, AUST (2015 – 2016)
  • National Computational Merit Allocation Scheme (NCMAS), AUST (2012 – 2016)

Editorial Boards

  • Editor-in-Chief, Nano Futures, Institute of Physics (2021 – current)
  • Chair, Executive Editorial Board, Nano Futures, Institute of Physics (2018 – current)
  • Executive Editorial Board, Journal of Physics: Materials, Institute of Physics (2018 – current)
  • Editorial Advisory Board, Advanced Theory & Simulations, Wiley-VCH (2021 – current)
  • Editorial Advisory Board, Nanoscale, Royal Society of Chemistry (2013 – current)
  • Guest Editor, Special Issue on Artificial Intelligence in Electrochemical Energy Storage, Batteries & Supercaps, Wiley-VCH (2020 – 2022)
  • Guest Editor, Special Issue on Advanced Material Modelling, Machine Learning and Multiscale Simulation, Journal of Physics: Materials, IOP (May 2019)
  • Senior Associate Editor, Science Advances, AAAS (2014 – 2017)
  • Guest Editor, Special Issue on Modelling for the Nanoscale, Nanoscale, RSC (February 2012)
  • Guest Editor, Special Issue on CVD Growth of Nanodiamond, Advanced Materials-CVD, Wiley (September 2008)
  • Guest Editor, Special Issue on Theory and Simulation of Nanomorphology, Journal of Computational and Theoretical Nanoscience (March 2007)
  • Associate Editor, Journal of Computational and Theoretical Nanoscience, American Scientific Publishers (2005 – 2011)

 

Updated:  10 August 2021/Responsible Officer:  Dean, CECS/Page Contact:  CECS Marketing