Senior Professor Amanda Barnard AM

Professor Amanda Barnard is one of Australia's most highly awarded computational scientists. She currently leads research at the interface of computational modeling, high performance supercomputing, and applied machine learning and artificial intelligence (AI). She was awarded her BSc (Hons) in applied physics in 2000, and her PhD in theoretical condensed matter physics in 2003 from RMIT University. After graduating she accepted a Distinguished Postdoctoral Fellow in the Center for Nanoscale Materials at Argonne National Laboratory (USA), and the prestigious senior research position as Violette & Samuel Glasstone Fellow at the University of Oxford (UK) with an Extraordinary Research Fellowship at The Queen’s College. Prior to joining ANU she was an ARC QEII Fellow, Office of the Chief Executive Science Leader, and then Chief Research Scientist in Data61 at CSIRO, between 2009 and 2020.
With more than 20 years experience in high performance computing and computational modeling, Prof Barnard is an advocate and champion for computational research in Australia and sits on boards for various institutions, including
She has been recognised for leadership, including as a 2017 Woman of Achievement from the Black & White Foundation, as a Finalist for the 2015 Daily Life Women of the Year, and was named as one of the Top 10 Business Women in Australia by the Huffington Post in 2015. Her research has been awarded in five scientific disciplines, including the 2009 Young Scientist Prize in Computational Physics from the International Union of Pure and Applied Physics, the 2009 Mercedes Benz Environmental Research Award, the 2009 Malcolm McIntosh Award from the Prime Minister of Australia for the Physical Scientist of the Year, the 2010 Frederick White Prize from the Australian Academy of Sciences, the 2010 Distinguished Lecturer Award from the IEEE South Australia, the 2010 Eureka Prize for Scientific Research, the 2014 ACS Nano Lectureship (Asia/Pacific) from the American Chemical Society, the 2014 Feynman Prize in Nanotechnology (Theory) from the Foresight Institute, and the 2019 AMMA Medal from the Association of Molecular Modellers of Australasia. In 2022 she was appointed as a Member of the Order of Australia.
- Applied machine learning and artificial intelligence
- Data science and eResearch
- Computational methods for the physical sciences, including theoretical development and simulation
- Materials informatics and nanoinformatics
- High performance computing
Current student projects
Principal investigator
Supervisory Chair
Complete student projects
Supervisory Chair
Supervisor
Potential student projects
Journal Publications
-
I. C. Kuschnerus, H. Wen, Y. Y. Khine, J. Ruan, C.‐J. Su, U. Jeng, G. Opletal, A.S. Barnard, E. Ōsawa, O. Shenderova, V. Mochalin, M. Liu, S. Chang, Complex dispersion of detonation nanodiamond revealed by machine learning assisted cryo‐TEM and coarse‐grained molecular dynamics simulations. ACS Nanosci. Au 3, (2023), 211–221
-
N. Bhat, A.S. Barnard, N. Birbilis, Improving the prediction of mechanical properties of aluminium alloy using data‐driven class-based regression. Comp. Mater. Sci. 228 (2023) 112270
-
W. Huang, T. Liu, H. Suominen, G. Rice, C.S. Gallo, A.S. Barnard, Explainable discovery of disease biomarkers: The case of ovarian cancer to illustrate the best practice in machine learning and Shapley analysis. J. Biomedical Informatics, 141 (2023) 104365.
-
N. Bhat, A.S. Barnard, N. Birbilis, Unsupervised machine learning discovers eight classes in aluminium alloys. Royal Soc. Open Sci. 10 (2023) 220360.
-
J.Y.C. Ting, A.J. Parker, A.S. Barnard, Data-driven design of classes of ruthenium nanoparticles using multi-target Bayesian inference. Chem. Mater. 35 (2023) 728 – 738.
-
W. Huang, A.S. Barnard, Federated data processing and learning for collaboration in the physical sciences. Mach. Learn. Sci. Tech. 3 (2022) 045023.
-
S.A. Idrus-Saidi, J. Tang, S. Lambie, M. Mayyas, M.B. Ghasemian, F.-M. Allioux, S. Cai, P. Koshy, P. Mostaghimi, K.G. Steenbergen, A.S. Barnard, T. Daeneke, N. Gaston, K. Kalantar-Zadeh, Liquid metal synthesis solvents for metallic crystals. Science 378 (2022) 1118 – 1124.
-
S. Li, J.Y.C. Ting, A.S. Barnard, Impact of domain-driven and data-driven feature selection on the inverse design of nanoparticle electrocatalysts using machine learning. J. Comp. Sci. 65 (2022) 101896.
-
J.Y.C. Ting, S. Li, A.S. Barnard, Causal paths allowing simultaneous control of multiple nanoparticle properties using multi-target Bayesian inference. Adv. Theory Simul. 5 (2022) 2200330.
-
S. Li, A.S. Barnard, Inverse design of MXenes for high-capacity energy storage materials using multi-target classification and regression. Chem. Mater. 34 (2022) 4964 – 4974.
-
B. Motevalli, B. Fox, A.S. Barnard, Charge-dependent Fermi level of graphene oxide nanoflakes from machine learning. Comp. Mater. Sci. 211 (2022) 111526.
-
S. Li, A.S. Barnard, Safety-by-design using forward and inverse multi-target machine learning. Chemosphere 301 (2022) 135033.
-
B. Motevalli, L. Hyde, B. Fox, A.S. Barnard, Predicting the probability of observation of arbitrary graphene oxide nanoflakes using artificial neural networks. Adv. Theory Simul. 5 (2022) 2200013.[Cover]
-
J.Y.C. Ting, A.S. Barnard, Data-driven causal inference of process-structure relationships in nanocatalysis. Curr. Opin. Chem. Eng. 36 (2022) 100818.
-
S. Li, A.S. Barnard, Inverse design of nanoparticles using multi-target machine learning. Adv. Theory Simul. 5 (2022) 2100414.
-
G. Opletal, A.S. Barnard, Simulating facet-dependent aggregation and assembly of mixtures of polyhedral nanoparticles. Adv. Theory Simul. 5 (2022) 2100279.
-
A.S. Barnard, Explainable prediction of N–V related defects in nanodiamond using neural networks and Shapley values. Cell Reports Physical Science 3 (2022) 100696.
-
J.M. Fischer, A.J. Parker, A.S. Barnard, Interfacial Informatics, J. Phys. Mater. 4 (2021) 041001.
-
H. Yin, Z. Sun, Z. Wang, D. Tang, C. H. Pang, X. Yu, A. S. Barnard, H. Zhao, Z. Yin, When 2D materials meet machine learning: The data-intensive scientific revolution. Cell Press Physical Science 2 (2021) 100482.
-
T. Liu, A.S. Barnard, Fast derivation of Shapley based feature importances through feature extraction methods for nanoinformatics. Mach. Learn. Sci. Tech. 2 (2021) 035034
-
H. Zhang, A.S. Barnard, Impact of atomistic or crystallographic descriptors for classification of gold nanoparticles. Nanoscale 13 (2021) 11887 – 11898
-
R. Stocks, A.S. Barnard, Enhancing classical simulations with electronic corrections and artificial neural networks. J. Phys: Cond. Matter. 33 (2021) 324003.
-
D.R. Gunasegaram, A.B. Murphy, A. S. Barnard, T. DebRoy, I. Matthews, L. Ladani, D. Gu, Towards developing multiscale-multiphysics models and their surrogates for digital twins of metal additive manufacturing, Add. Manufact. 46 (2021) 102089.
-
A.J. Parker, A.S. Barnard, Unsupervised structure classes vs supervised property classes of silicon quantum dots using neural networks, Nanoscale Hozizons. 6 (2021) 277 – 282.
-
A.J. Parker, B. Motevalli, G. Opletal, A.S. Barnard, The pure and representative types of disordered platinum nanoparticles from machine learning, Nanotech. 32 (2021) 095404
-
G. Opletal, S.L.Y. Chang, A.S. Barnard, Simulating facet-dependent aggregation and assembly of distributions of polyhedral nanoparticles. Nanoscale, 12 (2020) 19870 – 19879.
-
A.J. Parker, A.S. Barnard, Machine learning reveals multiple classes of diamond nanoparticles. Nanoscale Horizons, 5 (2020) 1394 – 1399.
-
J.M. Fischer, M. Hunter, M. Hankel, D. Seales, A.J. Parker, A.S. Barnard, Accurate prediction of binding energies for two-dimensional catalytic materials using machine learning. ChemCatChem, 12 (2020) 5109 – 5120.
-
A.S. Barnard, G. Opletal, Selecting machine learning models for metallic nanoparticles. Nano Futures, 4 (2020) 035003.
-
A.J. Parker, G. Opletal, A.S. Barnard, Classification of platinum nanoparticle catalysts using machine learning. J. Appl. Phys. 128 (2020) 014301.[Cover]
-
A.S. Barnard, Best practice leads to the best materials informatics. Matter, 3 (2020) 22 – 23.
-
B. Motevalli, B. Sun, A.S. Barnard, Understanding and predicting the cause of defects in graphene oxide nanostructures using machine learning. J. Phys. Chem. C, 124 (2020) 7404 – 7413.
-
G. Opletal, M. Golebiewski, A.S. Barnard, Simulated nanoparticle assembly using protoparticles (SNAP). J. Phys.: Mater. 3 (2020) 026001.
-
S.L.Y. Chang, P. Reineck, D. Williams, G. Bryant, G. Opletal, S.A. El-Demrdash, P.L. Chiu, E. Osawa, A.S. Barnard, D. Dwyer, Dynamic self-assembly of detonation nanodiamond in water. Nanoscale 12, (2020) 5363 – 5367.
- T. Cox, B. Motevalli, G. Opletal, A.S. Barnard, Feature engineering of solid state crystalline lattices for machine learning. Adv. Theory Simul. 2 (2020) 1900190.
- B. Motevalli, A.J. Parker, B. Sun, A.S. Barnard, The representative structure of graphene oxide nanoflakes from machine learning. Nano Futures 3 (2019) 045001.
- A.S. Barnard, G. Opletal, Predicting structure/property relationships in multi-dimensional nanoparticle data using t-distributed stochastic neighbor embedding and machine learning. Nanoscale 11 (2019) 23165 – 23172.
- A.J. Parker, A.S. Barnard, Selecting appropriate clustering methods for materials science applications of machine learning. Adv. Theory Simul. 2 (2019) 1900145. [Cover]
- A.S. Barnard, B. Motevalli, A.J. Parker, J.M. Fisher, C.A. Feigl, G. Opletal, Nanoinformatics, and the big challenges for the science of small things. Nanoscale 11 (2019) 19190 – 19201.
- S.L.Y. Chang, D. Williams, M. Roldan Gutierrez, C. Dwyer, A. Barnard, Aggregation behavior of detonation nanodiamond in solution, Micros. Microanal. 25 (2019) 1740 – 1741
- A.S. Barnard, B. Motevalli, B. Sun, Identifying hidden high-dimensional structure/property relationships using self-organising maps. MRS Comm. 9 (2019) 730 – 736
- C.A. Feigl, B. Motevalli, A.J. Parker, B. Sun, A.S. Barnard, Classifying and predicting the electron affinity of diamond nanoparticles using machine learning. Nanoscale Horiz. 4 (2019) 983 – 990
- A.S. Barnard, G. Opletal, S.L.Y. Chang, Does twinning impact structure/property relationships in diamond nanoparticles? J. Phys. Chem. C, 123 (2019) 11207 – 11215
- B. Sun, A.S. Barnard, Visualising multi-dimensional structure/property relationships with machine learning. J. Phys.: Mater. 2 (2019) 034003
- G. Opletal, B. Sun, T.C. Petersen, S.P. Russo, A.S. Barnard, Vacancy induced formation of nanoporous silicon, carbon and silicon carbide. PhysChemChemPhys 21 (2019) 6517 – 6524
- B. Sun, H. Barron, G. Opletal, A.S. Barnard, From process to properties: Correlating synthesis conditions and structural disorder of platinum nanocatalysts. J. Phys. Chem. C 122 (2018) 28085 – 28093
- T. Yan, B. Sun, A.S. Barnard, Predicting archetypal nanoparticle shapes using a combination of thermodynamic theory and machine learning. Nanoscale 10 (2018) 21818 – 21826
- B. Sun, H. Barron, B. Wells, G. Opletal, A.S. Barnard, Correlating anisotropy and disorder with the surface structure of platinum nanoparticles. Nanoscale 10 (2018) 20393 – 20404
- G. Opletal, T.C. Petersen, S.P. Russo, A.S. Barnard, PorosityPlus: Characterisation of defective, nanoporous and amorphous materials. J. Phys.: Mater. 1 (2018) 016002
- B. Sun, A.S. Barnard, Texture based image classification for nanoparticle surface characterisation and machine learning. J. Phys.: Mater. 1 (2018) 016001
- L. Gloag, T. Benedetti, S. Cheong, Y. Li, X.H. Chan, L-M. Lacroix, S.L.Y. Chang, R. Arenal, I. Florea, H. Barron, A.S. Barnard, A.M. Henning, C. Zhao, W. Schuhmann, J.J. Gooding, R.D. Tilley, Three-dimensional branched and faceted gold-ruthenium nanoparticles: Using nanostructure to improve stability in oxygen evolution electrocatalysis. Angew. Chemie Int. Ed. 6 (2018) 10241 – 10245
- E. Swann, B. Sun, D.M. Cleland, A.S. Barnard, Representing molecular and materials data for unsupervised machine learning. Molec. Simulat. 44 (2018) 905 – 920
- A.S. Barnard, Predicting the impact of structural diversity on the performance of nanodiamond drug carriers. Nanoscale 10 (2018) 8893 – 8910
- S.L.Y. Chang, C. Dwyer, E. Osawa, A.S. Barnard, Size dependent surface reconstruction in detonation nanodiamond. Nanoscale Horiz. 3 (2018) 213 – 217
- B. Sun, M. Fernandez, A.S. Barnard, Machine learning for silver nanoparticle electron transfer property prediction. J. Chem. Info. Mod. 57 (2017) 2413 – 2423
- M. Fernandez, H. Barron, A.S. Barnard, Artificial neural network analysis of the catalytic efficiency of platinum nanoparticles. RSC Advances 7 (2017) 48962 – 48971
- B. Sun, A.S. Barnard, Impact of size and shape distributions on the electron charge transfer properties of silver nanoparticles. Nanoscale 9 (2017) 12698 – 12708
- M. Fernandez, A. Bilic, A.S. Barnard, Machine learning and genetic algorithm prediction of energy differences between electronic calculations of graphene nanoflakes. Nanotech. 28 (2017) 38LT03
- S.L.Y Chang, C. Dwyer, K. March, M. Mermoux, N. Nunn, O. Shenderova, E. Osawa, A.S. Barnard, Atomic and electronic structures of functionalized nanodiamond particles, Micros. Microanal. 23 (2017) 2270 – 2271
- E. Swann, M. Fernandez, M.L. Coote, A.S. Barnard, Bias-free chemically diverse test sets from machine learning. ACS Combi Sci. 19 (2017) 544 – 554
- G. Opletal, T.C. Petersen, A.S. Barnard, S.P. Russo, On reverse monte carlo constraints and model reproduction. J. Comp. Chem. 38 (2017) 1547 – 1551
- E. Swann, M.L. Coote, A.S. Barnard, M.C. Per, Efficient protocol for quantum Monte Carlo calculations of hydrogen abstraction barriers: Application to methanol. Int. J. Quant. Chem. 117 (2017) e25361
- H. Barron, G. Opletal, R.D. Tilley, A.S. Barnard, Predicting the role seed morphology in the evolution of anisotropic nanocatalysts. Nanoscale 9 (2017) 1502 – 1510
- M. Fernandez, H.F. Wilson, A.S. Barnard, Impact of distributions on the prediction of nanoparticle prototypes and archetypes. Nanoscale 9 (2017) 832 – 843
- A.S. Barnard, Heterogeneous PEGylation of diamond nanoparticles. Nanoscale 9 (2017) 70 – 74
- A.S. Barnard, E. Wei, L. Zadorin, J.J. Louviere, Using hypothetical product configurators to measure consumer preferences for nanoparticle size and concentration in sunscreens. Design Sci. 2 (2016) e12
- M. Fernandez, J.I. Abreu, H.Q. Shi, A.S. Barnard, Machine learning prediction of the energy gap of graphene nanoflakes using topological autocorrelation vectors. ACS Combi. Sci. 18 (2016) 661 – 664
- S.L.Y. Chang, A.S. Barnard, C. Dwyer, C.B. Boothroyd, E. Osawa, R.J. Nicholls, Surface and point defect measurements of detonation nanodiamond using combined Cs-Cc corrected TEM and ab initio calculations, Micros. Microanal. 22 (2016) 1392 – 1393
- L. Lai, A.S. Barnard, Tunable charge transfer on selectively functionalised diamond nanoparticles. Diamond & Relat. Mater. 68 (2016) 78 – 83
- B. Sun, A.S. Barnard, Impact of speciation on the electron charge transfer properties of nanodiamond drug carriers. Nanoscale 8 (2016) 14264 – 14270
- M. Fernandez, M. Breedon, I.S. Cole, A.S. Barnard, Modeling corrosion inhibition efficacy of small organic molecules as non-toxic chromate alternative using comparative molecular surface analysis (CoMSA), Chemosphere 160 (2016) 80 – 88
- S.L.Y. Chang, A.S. Barnard, C. Dwyer, C.B. Boothroyd, R. Hocking, E. Osawa, R.J. Nicholls, Counting vacancies and nitrogen-vacancy centers in detonation nanodiamond. Nanoscale 19 (2016) 10548 – 10552
- C. Higgins, R.L. Nixon, A.S. Barnard, Nanotechnology in dermatology - New frontiers. Australasian J. Derma. 57 (2016) 28
- H.F. Wilson, C. Tang, A.S. Barnard, Morphology of zinc oxide nanoparticles and nanowires: role of surface and edge energies. J. Phys. Chem. C 120 (2016) 9498 – 9505
- M. Fernandez, A.S. Barnard, Geometrical properties can predict CO2 and N2 adsorption performance of metal-organic frameworks (MOFs) at low pressure. ACS Comb. Sci. 18 (2016) 243 – 252
- H.F. Wilson, A.S. Barnard, Water bilayers on ZnO(1010) surfaces: data-driven structural search. RSC Advances 6 (2016) 30928 – 30936
- L. Lai, A.S. Barnard, Site-dependent atomic and molecular affinities of hydrocarbons, amines and thiols on diamond nanoparticles. Nanoscale 8 (2016) 7899 – 7905 [Cover]
- M. Fernandez, H.Q. Shi, A.S. Barnard, Geometrical features can predict electronic properties of graphene nanoflakes. Carbon 103 (2016) 142 – 150
- M.R. Bassett, T. Morishita, H.F. Wilson, A.S. Barnard, M.J.S. Spencer, Phenol-modified silicene; preferred substitution site and electronic properties. J. Phys. Chem. C 120 (2016) 6762 – 6770 [Cover]
- B. Sun, M. Fernandez, A.S. Barnard, Statistics, damned statistics and nanoscience - Using data science to meet the challenge of nanomaterial complexity. Nanoscale Horiz. 1 (2016) 89 – 95 [Back Cover]
- M.C. Per, A.S. Barnard, I.K. Snook, High-throughput simulation of the configuration and ionization potential of nitrogen doped graphene. Molec. Simulat. 42 (2016) 458 – 462 [Cover]
- A.S. Barnard, Challenges in modelling nanoparticles for drug delivery. J. Phys.: Condens. Matter 28 (2016) 023002
- H. Barron, G. Opletal, R.D. Tilley, A.S. Barnard, Dynamic evolution of specific catalytic sites on Pt nanoparticles. Catal. Sci. Technol. 6 (2016) 144 – 151
- M. Fernandez, H.Q. Shi, A.S. Barnard, Quantitative structure-property relationship modeling of electronic properties of graphene using atomic radial distribution function scores. J. Chem. Info. Mod. 55, (2015) 2500 – 2506
- M. Fernandez, A.S. Barnard, Identification of nanoparticle prototypes and archetypes. ACS Nano 9 (2015) 11980 – 11992
- H.F. Wilson, A.S. Barnard, Thermodynamics of hydrogen adsorption and incorporation at the ZnO(1010) surface. J. Phys. Chem. C 119 (2015) 26560 – 26565
- C. Tang, H.F. Wilson, M.J.S. Spencer, A.S. Barnard, Catalytic potential of highly defective (211) surfaces of zinc blende ZnO. PhysChemChemPhys. 17 (2015) 27683 – 27689
- H. Barron, A.S. Barnard, Using structural diversity to tune the catalytic performance of Pt nanoparticle ensembles. Catal. Sci. Technol. 5 (2015) 2848 – 2855
- A.S. Barnard, H.F. Wilson, Optical emission of statistical distributions of silicon quantum dots. J. Phys. Chem. C, 119 (2015) 7969 – 7977
- A.S. Barnard, Materials Science - Nanoscale Locomotion without fuel. Nature 519 (2015) 37 – 38
- H.Q. Shi, R.J. Rees, M.C. Per, A.S. Barnard, Impact of distributions and mixtures on the charge transfer properties of graphene nanoflakes. Nanoscale, 7 (2015) 1864 – 1871
- L. Lai, A.S. Barnard, Functionalized nanodiamonds for biological and medical applications. J. Nanosci. Nanotech. 15, (2015) 989 – 999
- A.S. Barnard, Impact of distributions on the photocatalytic performance of anatase nanoparticle ensembles. J. Mater. Chem. A 3 (2015) 60 – 64 [Cover]
- L. Lai, A.S. Barnard, Tuning the electron transfer properties of entire nanodiamond ensembles. J. Phys. Chem. C, 118, (2014) 30209 – 30215
- H.F. Wilson, L. McKenzie-Sell, A.S. Barnard, Shape dependence of the band gaps in luminescent silicon quantum dots. J. Mater. Chem. C, 2 (2014) 9451 – 9456
- L. Lai, A.S. Barnard, Anisotropic adsorption and distribution of immobilized carboxyl on nanodiamond. Nanoscale, 6 (2014) 14185 – 14189
- A.S. Barnard, M.C. Per, Size and shape dependent deprotonation potential and proton affinity of nanodiamond. Nanotech. 25 (2014) 445702
- C. Tang, M.J.S. Spencer, A.S. Barnard, Activity of ZnO polar surfaces: An insight from surface energies. PhysChemChemPhys. 16 (2014) 22139 – 22144
- P. Chen, S.A. Seabrook, V.C. Epa, J. Newman, A.S. Barnard, D.A. Winkler, J.K. Kirby, P.C. Ke, The contrasting effects of nanoparticle binding on protein denaturation. J. Phys. Chem. C, 118 (2014) 22069 – 22078
- M. Breedon, M.C. Per, I. Cole, A.S. Barnard, Molecular ionization and deprotonation energies as indicators of functional coating performance. J. Mater. Chem. A, 2 (2014) 16660 – 16668
- H. F. Wilson, A.S. Barnard, Thermodynamic control of halogen-terminated silicon nanoparticle morphology. Cryst. Growth & Des. 14 (2014) 4468 – 4474
- A.S. Barnard, Clarifying stability, probability and population in nanoparticle ensembles. Nanoscale 8 (2014) 9983 – 9990 [Cover]
- A.S. Barnard, In silico Veritas. ACS Nano, 8 (2014) 6520 – 6525
- D.A. Winkler, M. Breedon, C. Chu, F. Burden, A.S. Barnard, Tim Harvey, I. Cole, Towards chromate-free corrosion inhibitors: structure-property models for organic alternatives. Green Chem. 16 (2014) 3349 – 3357
- A.L. Gonzalez, C. Noguez, J. Beranek, A.S. Barnard, Size, shape, stability and color of plasmonic silver nanoparticles. J. Phys. Chem. C 118 (2014) 9128 – 9136
- H.F. Wilson, A.S. Barnard, Predictive morphology control of hydrogen-terminated silicon nanoparticles. J. Phys. Chem. C 118 (2014) 2580 – 2586
- A.S. Barnard, Optimal vacancy concentrations to maximize the N-V yield in nanodiamonds. Mater. Horizons 1 (2014) 289 – 291
- A.S. Barnard, E. Osawa, The impact of structural polydispersivity on the surface electrostatic potential of nanodiamond. Nanoscale, 6 (2014) 1188 – 1194
- A.S. Barnard, Modelling the impact of alkanethiol SAMs on the morphology of gold nanocrystals. Cryst. Growth Des. 13 (2013) 5433 – 5441
- L.K. Randeniya, H.Q. Shi, A.S. Barnard, J. Fang, P.J. Martin, K. Ostrikov, Harnessing the influence of reactive edges and defects of graphene substrates for achieving complete cycle of room-temperature molecular sensing. Small 9 (2013) 3993 – 3999
- H.Q. Shi, L. Lai, I.K. Snook, A.S. Barnard, Relative stability of graphene nano-flakes under environmentally relevant conditions. J. Phys. Chem. C 117 (2013) 15375 – 15382
- L. Lai, A.S. Barnard, Diamond nanoparticles as a new platform for the sequestration of waste carbon. PhysChemChemPhys. 15 (2013) 9156 – 9162
- A.L. Gonzalez, C. Noguez, A.S. Barnard, Mapping the structural and optical properties of anisotropic gold nanoparticles. J. Mater. Chem. C 1 (2013) 3150 – 3157
- H.Q. Shi, I.K. Snook, A.S. Barnard, Site-dependent stability and electronic structure of single vacancy point defects in hexagonal graphene nano-flakes. PhysChemChemPhys. 15 (2013) 4897 – 4905 [Cover]
- A.S. Barnard, Modeling polydispersive ensembles of diamond nanoparticles. Nanotech. 24 (2013) 085703
- H. Guo, H.F. Xu, A.S. Barnard, Can hematite nanoparticles be an environmental indicator? Energy & Environ. Sci. 6 (2013) 561 – 569
- H. Guo, A.S. Barnard, Naturally occurring iron oxide nanoparticles: Morphology, materials chemistry and environmental stability. J. Mater Chem. A 1 (2013) 27 – 42 [Cover]
- A.S. Barnard, Direct comparison of kinetic and thermodynamic influences on gold nanomorphology. Acc. Chem. Res. 45 (2012) 1688 – 1697
- C.A. Feigl, S.P. Russo, A.S. Barnard, Modelling nanoscale cubic ZnS morphology and thermodynamic stability under sulphur-rich conditions. Cryst. Eng. Comm. 14 (2012) 7749 – 7758 [Cover]
- H.Q. Shi, A.S. Barnard, I.K. Snook, Quantum mechanical properties of graphene nano-flakes and quantum dots. Nanoscale 4 (2012) 6761 – 6767 [Cover]
- H. Guo, A.S. Barnard, Environmentally dependent stability of low-index hematite surfaces. J. Colloid. Int. Sci. 386 (2012) 315 – 324
- C.A. Feigl, S.P. Russo, A.S. Barnard, Modelling polar wurtzite ZnS nanoparticles: the effect of sulphur supersaturation on size- and shape-dependent phase transformations. J. Mater. Chem. 22 (2012) 18992 – 18998
- H.Q. Shi, A.S. Barnard, I.K. Snook, High throughput theory and simulation of nanomaterials: Exploring the stability and electronic properties of nanographene. J. Mater. Chem. 22 (2012) 18119 – 18123
- L. Lai, A.S. Barnard, Surface phase diagram and thermodynamic stability of functionalisation of nanodiamonds. J. Mater. Chem. 22 (2012) 16774 – 16780
- Y. Chen, Y. Zhang, D.J.S. Birch, A.S. Barnard, Creation and luminescence of size selected gold nanorods. Nanoscale 4 (2012) 5017 – 5022
- A.L. Gonzalez, C. Noguez, A.S. Barnard, Map of the structural and optical properties of gold nanoparticles at thermal equilibrium. J. Phys. Chem. C 116 (2012) 14170 – 14175
- A.S. Barnard, Modelling of the reactivity and stability of carbon nanotubes under environmentally relevant conditions. PhysChemChemPhys. 14 (2012) 10080 – 10093 [Cover]
- L. Lai, A.S. Barnard, Charge-induced restructuring and decomposition of bucky-diamonds. J. Mater. Chem. 22 (2012) 13141 – 13147
- C.A. Feigl, A.S. Barnard, S.P. Russo, Size- and shape-dependent phase transformations in wurtzite ZnS nanostructures. PhysChemChemPhys. 14 (2012) 9871 – 9879
- A.S. Barnard, Mapping the shape and phase of palladium nanocatalysts. Catal. Sci. Tech. 2 (2012) 1485 – 1492
- S.L.Y. Chang, A.S. Barnard, C. Dwyer, T.W. Hansen, J.B. Wagner, R.E. Dunin-Borkowski, M. Weyland, H. Konishi, H.F. Xu, Stability of porous platinum nanoparticles: combined in-situ TEM and theoretical study. J. Phys. Chem. Lett. 3 (2012) 1106 – 1110
- L. Lai, A.S. Barnard, Inter-particle interactions and self-assembly of functionalized nanodiamonds. J. Phys. Chem. Lett. 3 (2012) 896 – 901
- A.S. Barnard, I.K. Snook, Ripple induced changes in the wavefunction of graphene: An example of a fundamental symmetry breaking. Nanoscale, 4 (2012) 1167 – 1170 [Cover]
- L. Lai, A.S. Barnard, Nanodiamond for hydrogen storage: Temperature-dependent hydrogenation and charge-induced dehydrogenation. Nanoscale 4 (2012) 1130 – 1137105.
- H. Guo, A.S. Barnard, Surface phase diagram of hematite pseudocubes in hydrous environments. J. Mater. Chem. 22 (2012) 161 – 167
- H.Q. Shi, A.S. Barnard, I.K. Snook, Modelling the role of size, edge structure and terminations on the electronic properties of trigonal graphene nano-flakes. Nanotech. 23 (2012) 065707
- H. Guo, A.S. Barnard, Surface structure and environment-dependent hydroxylation of hematite (100) from density functional theory modeling. J. Phys. Chem. C 115 (2011) 23023 – 23029
- A.S. Barnard, H. Konishi, H. Xu, Morphology mapping of platinum catalysts over the entire nanoscale. Catal. Sci. Technol. 1 (2011) 1440 – 1488
- H. Guo, A.S. Barnard, Proton transfer in the hydrogen-bond chains of lepidocrocite: A computational study. PhysChemChemPhys. 13 (2011) 17864 – 17869
- A.S. Barnard, Y. Chen, Kinetic modelling of the shape-dependent evolution of faceted gold nanoparticles. J. Mater. Chem. 21 (2011) 12239 – 12245 [Cover]
- A.S. Barnard, I.K. Snook, Modelling the role of size, edge structure and terminations on the electronic properties of graphene nano-flakes. Model. Simulat. Mater. Sci. Eng. 19 (2011) 054001
- L. Lai, A.S. Barnard, Modeling the atomic structure and thermostability of oxygen, hydroxyl, and water functionalization of nanodiamonds. Nanoscale, 3 (2011) 2566 – 2575
- H. Guo, A.S. Barnard, Thermodynamic modelling of nanomorphologies of hematite and goethite. J. Mater. Chem. 21 (2011) 11566 – 11577
- I.K. Snook, A.S. Barnard, Theory, experiment and applications of graphene nano-flakes. J. Nanosci. Lett. 1 (2011) 50 – 60 [Cover of Inaugural Issue]
- L. Lai, A.S. Barnard, Stability of nanodiamond exposed to N, NH and NH2. J. Phys. Chem. C, 115 (2011) 6218 – 6228
- A. Adnan, R. Lam, C. Hanning, J. Lee, D. J. Schaffer, A.S. Barnard, G. C. Schatz, D. Ho, W. K. Liu, Atomistic Simulation and measurement of pH dependent cancer therapeutic interactions with nanodiamond carriers. Mol. Pharmaceutics, 8 (2011) 368 – 374
- C.A. Feigl, A.S. Barnard, S.P. Russo, Comparative density functional theory investigation of the mechanical and energetic properties of ZnS. Molec. Simulat. 37 (2011) 321
- H. Guo, A.S. Barnard, Computational challenges in accurate modeling of iron oxides and oxyhydroxides, and the prediction of environmentally sensitive phase transformations. Phys. Rev. B. 83 (2011) 094112 – 094130
- L.Y. Chang, E. Osawa, A.S. Barnard, Confirmation of the electrostatic self-assembly of nanodiamonds. Nanoscale, 3 (2011) 958 – 962
- A.S. Barnard, I.K. Snook, Ideality versus reality: Predicting the effect of realistic environments on the electronic properties of nanographene. Nanosci. Nanotech. Lett. 3 (2011) 59 – 62
- A.S. Barnard, Mapping the photocatalytic activity or potential free radical toxicity of nanoscale titania. Energy & Environ. Sci. 4 (2011) 439 – 443 [Cover]
- A.S. Barnard, L.Y. Chang, Thermodynamic cartography and structure/property mapping of commercial platinum catalysts. ACS Catalysis, 1 (2011) 76 – 81
- A.S. Seyed-Razavi, I.K. Snook, A.S. Barnard, Surface area limited model for predicting anisotropic coarsening of facetted nanoparticles. Cryst. Growth & Des. 11 (2011) 158 – 165
- A.S. Barnard, Useful equations for modeling the relative stability of common nanoparticle morphologies. Comp. Phys. Comm. 182 (2011) 11 – 13
- A.S. Barnard, I.K. Snook, Size- and shape-dependence of the graphene to graphane transformation in the absence of hydrogen. J. Mater. Chem. 20 (2010) 10459 – 10464
- A.S. Barnard, C.A. Feigl, S.P. Russo, Morphological and phase stability of zinc blende, amorphous and mixed core-shell ZnS nanoparticles. Nanoscale, 2 (2010) 2294 – 2301
- L.Y. Chang, A.S. Barnard, L.C. Gontard, R. Dunin-Borkowski, Resolving the structure of active sites on platinum catalytic nanoparticles. Nano Lett. 10 (2010) 3073 – 3076
- A.S. Barnard, Modelling of nanoparticles: Approaches to morphology and evolution. Rep. Prog. Phys. 73 (2010) 086502
- C.A. Feigl, S.P. Russo, A.S. Barnard, Safe, stable and effective nanotechnology: Phase mapping of zinc sulfide nanoparticles. J. Mater. Chem. 20 (2010) 4971 – 4980
- C. Bradac, T. Gaebel, N.N. Naidoo, M.J. Sellars, J. Twamley, L. Brown, A.S. Barnard, T. Plakhotnik, A.V. Zvyagin, J.R. Rabeau, Observation and control of blinking nitrogen vacancy centres in discrete nanodiamonds. Nat. Nanotechnol. 5 (2010) 345 – 349
- A.S. Barnard, One-to-One comparison of sunscreen efficacy, aesthetics and potential nanotoxicity. Nat. Nanotechnol. 5 (2010) 271 – 274
- A.S. Barnard, I.K. Snook, Transformation of graphene into graphane in the absence of hydrogen. Carbon 48 (2010) 981 – 986
- A.S. Seyed-Razavi, I.K. Snook, A.S. Barnard, Origin of Nanomorphology: Does a complete theory of nanoparticle evolution exist? J. Mater. Chem. 20 (2010) 416 [Cover]
- A.S. Barnard, Shape-dependent confinement of the nanodiamond band-gap. Cryst. Growth & Des. 5 (2009) 4860 – 4863
- C. Bradac, T. Gaebel, N. Naidoo, J.R. Rabeau, A.S. Barnard, Prediction and measurement of the size-dependent stability of fluorescence in diamond over the entire nanoscale. Nano Lett. 9 (2009) 3555 – 3564
- A.S. Barnard, Computational strategies for predicting the risks associated with nanotechnology. Nanoscale 1, (2009) 89 – 95
- A.S. Barnard, Diamond standard in diagnostics: Nanodiamond biolabels make their mark. Analyst 134 (2009) 1751 – 1764 [Cover]
- A.S. Barnard, Partnerships for sustainable nanotechnology. Materials Today 12 (2009) 47 [Cover]
- A.S. Barnard, N. Young, A.I. Kirkland, M.A. van Huis, H. Xu, Nanogold: A quantitative phase map. ACS Nano 3 (2009) 1431 – 1436
- A.S. Barnard, S.P Russo, Modeling nanoscale FeS2 formation in sulphur rich conditions. J. Mater. Chem. 19 (2009) 3389 – 3394
- A.S. Barnard, How can ab initio simulations address risks in nanotech? Nat. Nanotechnol. 4 (2009) 332 – 335
- A.S. Barnard, S.P Russo, Morphological stability of pyrite FeS2 nanocrystals in water. J. Phys. Chem. C, 113 (2009) 5376
- A.S. Barnard, Modelling the relative stability of carbon nanotubes exposed to environmental adsorbates and air. J. Phys: Condens. Matter, 21 (2009) 144205
- J.E. Hales, A.S. Barnard, Thermodynamic stability and electronic structure of small carbon nitride nanotubes. J. Phys: Condens. Matter, 21 (2009) 144203
- A.S. Barnard, S.P Russo, Modeling the environmental stability of FeS2 nanorods, using lessons from biomineralization, Nanotech. 20 (2009) 115702
- A.S. Barnard, I.I. Vlasov, V.G. Ralchenko, Predicting the distribution and stability of photoactive defect centers in nanodiamond biomarkers. J. Mater. Chem. 19 (2009) 360
- I.I. Vlasov, A.S. Barnard, V.G. Ralchenko, O.I. Lebedev, M.V. Kanzuba, A.V. Saveliev, V.I. Konov, E. Goovaerts, Nanodiamond photo emitters based on strong luminescence from silicon-vacancy defects. Adv. Mater. 21 (2008) 808
- A.S. Barnard, H. Xu, An environmentally sensitive phase map of titania nanocrystals. ACS Nano 2 (2008) 2237 – 2242
- A.S. Barnard, M. Sternberg, Vacancy induced structural changes in diamond nanoparticles. J. Comput. Theo. Nanosci. 5 (2008) 2089
- A.S. Barnard, G. Opletal, I.K. Snook, S.P. Russo, Ideality versus reality: The emergence of the Chui-icosahedron. J. Phys. Chem. C, 112 (2008) 14848
- A.S. Barnard, Self-assembly in nanodiamond agglutinates. J. Mater. Chem. 18 (2008) 4038 – 4041
- A.S. Barnard, A.I. Kirkland, Combining theory and experiment in determining the surface chemistry of nanocrystals. Chem. Mater. 20 (2008) 5460
- A. Fiori, S. Orlanducci, V. Sessa, E. Tamburri, F. Toschi, M.L. Terranova, A. Ciorba, M Rossi, M. Lucci, A.S. Barnard, Hybrid carbon nanotube/nanodiamond structures as electron emitters for cold cathodes. J. Nanosci. Nanotech. 8, (2008) 1989
- A.S. Barnard, I.K. Snook, Thermal stability of graphene edge structure and graphene nanoflakes. J. Chem. Phys. 128 (2008) 094707
- A.S. Barnard, Modelling the shape, orientation and stability of twinned gold nanorods. J. Phys. Chem. C 112 (2008) 1385
- A.S. Barnard, M. Sternberg, Crystallinity and surface electrostatics in diamond nanoparticles. J. Mater. Chem. 17 (2007) 4811 – 4819
- A.S. Barnard, H. Xu, First principles and thermodynamic modeling of CdS surfaces and nanorods. J. Phys. Chem. C, 111 (2007) 18112
- A.S. Barnard, M. Sternberg, Can we predict the location of impurities in diamond nanoparticles? Diamond Relat. Mater. 16 (2007) 2078
- A.S. Barnard, S.P. Russo, Shape and thermodynamic stability of pyrite FeS2 nanocrystals and nanorods. J. Phys. Chem. C, 111 (2007) 11742
- A.S. Barnard, L.A. Curtiss, Modeling the preferred shape, orientation and aspect of gold nanorods. J. Mater. Chem. 17 (2007) 3315
- A.S. Barnard, I.K. Snook, S.P. Russo, Bonding and structure of BxNy armchair nanotubes (x,y = 1,2). J. Mater. Chem. 17 (2007) 2892
- H.J. Fan, A.S. Barnard, M. Zacharias, ZnO nanowires and nanobelts: shape selection and thermodynamic modeling. Appl. Phys. Lett. 90 (2007) 143116
- A.S. Barnard, M. Sternberg, Mapping the location of nitrogen in diamond nanoparticles. Nanotech. 18, (2007) 025702
- A.S. Barnard, A thermodynamic model for the shape and stability of twinned nanostructures. J. Phys. Chem. B, 110 (2006) 24498 – 24504
- A.S. Barnard, H. Xu, X. Li, N. Pradham, X. Peng, Modeling the formation of high aspect CdSe quantum wires: Axial-growth versus oriented-attachment mechanisms. Nanotech. 17 (2006) 5707
- A.S. Barnard, M. Sternberg, Substitutional boron in nanodiamond, bucky-diamond and nanocrystalline diamond grain boundaries. J. Phys. Chem. B, 110 (2006) 19307
- A.S. Barnard, L.A. Curtiss, Predicting the shape and structure of face centered cubic gold nanocrystals smaller than 3 nm. ChemPhysChem, 7 (2006) 1544
- A.S. Barnard, R.R. Yeredla, H. Xu, Modelling the effect of particle shape on the phase stability of ZrO2 nanoparticles. Nanotech. 17 (2006) 3039
- A.S. Barnard, Thermodynamic modeling of hydrogen adsorption on carbon nanotubes during CVD growth. Chem. Vapour Depos. 12 (2006) 388
- A.S. Barnard, S. Erdin, Y. Lin, P. Zapol, W. Halley, Modeling the structure and electronic properties of TiO2 nanoparticles. Phys. Rev. B, 73 (2006) 205405
- A.S. Barnard, Nano-hazards: Knowledge is our first defence. Nat. Mater. 5 (2006) 245 – 248
- A.S. Barnard, Theory and modeling of nanocarbon phase stability. Diamond & Relat. Mater. 15 (2006) 285
- A.S. Barnard, Using theory and modelling to investigate shape at the nanoscale. J. Mater. Chem. 16 (2006) 813 [Cover]
- A.S. Barnard, Y. Xiao, Z. Cai, Modelling the shape and orientation of ZnO nanobelts. Chem. Phys. Lett. 419 (2006) 313
- A.S. Barnard, X.M. Lin, L.A. Curtiss, Equilibrium morphology of face centered cubic gold nanoparticles >3 nm, and the shape changes induced by temperature. J. Phys. Chem. B 109 (2005) 24465
- A.S. Barnard, M. Sternberg, Substitutional nitrogen in nanodiamond and bucky-diamond particles. J. Phys. Chem. B, 109 (2005) 17107
- A.S. Barnard, Z. Saponjic, D. Tiede, T. Rajh, L.A. Curtiss, Multi-scale modeling of titanium dioxide: Controlling shape with surface chemistry. Rev. Adv. Mater. Sci. 10 (2005) 21 – 27
- A.S. Barnard, L.A. Curtiss, Computational nano-morphology: Modeling shape as well as size. Rev. Adv. Mater. Sci. 10 (2005) 105 – 109
- A.S. Barnard, S.P. Russo, I.K. Snook, Simulation and bonding of dopants in nanocrystalline diamond. J. Nanosci. Nanotech. 5 (2005) 1395 – 1407
- A.S. Barnard, S.P. Russo, I.K. Snook, Modeling of stability and phase transformations in quasi-zero dimensional nanocarbon systems. J. Comput. Theo. Nanosci. 2 (2005) 180 – 201 [Cover]
- A.S. Barnard, L.A. Curtiss, Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. Nano Lett. 5 (2005) 1261 – 1266
- M.L. Terranova, S. Orlanducci, A. Fiori, E. Tamburri, V. Sessa, M. Rossi, A.S. Barnard, Controlled evolution of carbon nanotubes coated by nanodiamond: The realization of a new class of hybrid nanomaterials. Chem. Mater. 17 (2005) 3214
- A.S. Barnard, S.P. Russo, I.K. Snook, First principles modelling of dopants in C29 and C29H24 nanodiamond. J. Phys. Chem. B 109 (2005) 11991
- A.S. Barnard, P. Zapol, L.A. Curtiss, Anatase and rutile surfaces with adsorbates representative of acidic and basic conditions. Surf. Sci. 582 (2005) 173 – 188
- S.H.N Lim, D.G. McCulloch, M.M.M. Bilek, D.R. McKenzie, S.P. Russo, A.S. Barnard, A. Torpy, Characterisation of cathodic arc deposited titanium aluminium nitride films prepared using plasma immersion ion implantation. J. Phys: Condensed. Matter 17, (2005) 2791
- I.K. Snook, A.S. Barnard, S.P. Russo, R. Springall, and J. Srbinovsky, Simulating nano-carbon materials. Molec. Simulat. 31, (2005) 495
- Z.V. Saponjic, N. Dimitrijevic, D. Tiede, A. Goshe, X. Zuo, L. Chen, A.S. Barnard, P. Zapol, L.A. Curtiss, T. Rajh, Shaping nanoscale architecture through surface chemistry. Adv. Mater. 17, (2005) 965
- A.S. Barnard, S.P. Russo, I.K. Snook, Visualization of hybridization in nanocarbon systems. J. Comput. Theo. Nanosci. 2, (2005) 68
- A.S. Barnard, M.L. Terranova, M. Rossi, Density functional study of H-induced defects as nucleation sites in hybrid carbon nanomaterials. Chem. Mater. 8, (2005) 527
- A.S. Barnard, P. Zapol, L.A. Curtiss, Modeling the morphology and phase stability of TiO2 nanocrystals in water. J. Chem. Theo. Comp. 1 (2005) 107
- A.S. Barnard, Shape and energetics of TiN nanoparticles. J. Comput. Theo. Nanosci. 1 (2004) 334
- A.S. Barnard, P. Zapol, Predicting the energetics, phase stability and morphology evolution of faceted and spherical anatase nanocrystals. J. Phys. Chem. B, 108 (2004) 18435 – 18440
- A.S. Barnard, P. Zapol, Effects of particle morphology and surface hydrogenation on the phase stability TiO2 at the nanoscale. Phys. Rev. B, 70 (2004) 235403
- A.S. Barnard, P. Zapol, A model for the phase stability of arbitrary nanoparticles as a function of size and shape. J. Chem. Phys. 121 (2004) 4276 – 4283
- A.S. Barnard, Structural properties of diamond nanowires: Theoretical predications and experimental progress. Rev. Adv. Mater. Sci. 6 (2004) 94 – 119
- A.S. Barnard, P. Bath, S.P. Russo, I.K. Snook, A Monte Carlo study of surface reconstruction in (100) and (111) diamond surfaces and nanodiamond. Molec. Simulat. 30, (2004) 1
- A.S. Barnard, I.K. Snook, Phase stability of nanocarbon in one-dimension: Nanotubes versus diamond nanowires. J. Chem. Phys. 120 (2004) 3817
- A.S. Barnard, S.P. Russo, I.K. Snook, Bucky-wires and the instability of the diamond (111) surface in one-dimension. J. Nanosci. Nanotech. 2 (2004) 151
- A.S. Barnard, S.P. Russo, I.K. Snook, From nanodiamond to diamond nanowires: Structural properties affected by dimension. Phil. Mag. 84 (2004) 899
- A.S. Barnard, S.P. Russo, I.K. Snook, Structural relaxation and relative stability of nanodiamond morphologies. Diamond & Relat. Mater. 12 (2004) 1867
- A.S. Barnard, S.P. Russo, I.K. Snook, Electronic band gaps for diamond nanowires. Phys. Rev. B, 68 (2003) 235407
- A.S. Barnard, S.P. Russo, I.K. Snook, First principles investigations of diamond ultrananocrystals. Int. J. Mod. Phys. B, 17 (2003) 3865
- A.S. Barnard, S.P. Russo, I.K. Snook, Ab initio modelling of diamond nanowire structures. Nano Lett. 3 (2003) 1323 [Cover]
- A.S. Barnard, S.P. Russo, I.K. Snook, Coexistence of bucky-diamond with the nanodiamond and fullerene phases. Phys. Rev. B, 68 (2003) 73406
- A.S. Barnard, S.P. Russo, Structure and energetics of single-walled armchair and zigzag silicon nanotubes. J. Phys. Chem. B, 107 (2003) 7577
- A.S. Barnard, S.P. Russo, I.K. Snook, Surface structure of cubic diamond nanowires. Surf. Sci. 538 (2003) 204
- A.S. Barnard, S.P. Russo, I.K. Snook, Ab initio modelling of B and N in C29 and C29H24 nanodiamond. J. Chem. Phys. 118, (2003) 10725
- A.S. Barnard, S.P. Russo, I.K. Snook, Ab initio modelling of dopants in diamond nanowires: II. Phil. Mag. 83 (2003) 2311
- A.S. Barnard, S.P. Russo, I.K. Snook, Ab initio modelling of boron and nitrogen in diamond nanowires. Phil. Mag. 83 (2003) 2301
- A.S. Barnard, S.P. Russo, I.K. Snook, Size dependent phase stability of carbon nanoparticles: Nanodiamond versus fullerenes. J. Chem. Phys. 118 (2003) 5094
- A.S. Barnard, S.P. Russo, I.K. Snook, Ab initio modelling of band states in doped diamond. Phil. Mag. 83, (2003) 1163
- S.P. Russo, A.S. Barnard, I.K. Snook, Hydrogenation of nanodiamond surfaces: Structure and effects on crystalline stability. Surf. Rev. Lett. 10 (2003) 233
- A.S. Barnard, S.P. Russo, I.K. Snook, Ab initio modelling of stability of nanodiamond morphologies. Phil. Mag. Lett. 83 (2003) 39 – 45
- A.S. Barnard, S.P. Russo, I.K. Snook, Comparative Hartree-Fock and density functional theory study of cubic and hexagonal diamond. Phil. Mag. B, 82 (2002) 1767
- A.S. Barnard, S.P. Russo, Development of an improved Stillinger-Weber potential for tetrahedral carbon using ab initio (Hartree-Fock and MP2) methods. Mol. Phys. 100 (2002) 1517
- A.S. Barnard, S.P. Russo, G.I. Leach, Nearest neighbour considerations in Stillinger-Weber type potentials for diamond. Molec. Simulat. 28 (2002) 761
Refereed Conference Proceedings
-
T. Lui, A.S. Barnard, Shapley based residual decomposition for instance analysis. Proceedings of the 40th International Conference on Machine Learning, ICML (2023)
-
S. Li, A.S. Barnard, Variance tolerance factors for interpreting all good neural networks. Proceeding of the International Joint Conference on Neural Networks, IJCNN (2023)
-
Y. Xu, M. De La Pierre, A.S. Barnard, G.M.J. Barca, A machine learning approach towards runtime optimisation of matrix multiplication. Proc .37th IEEE International Parallel \& Distributed Processing Symposium (2023)
-
S. Li, J. Ting, A.S. Barnard, Optimization-free inverse design of high-dimensional nanoparticle electrocatalysts using multi-target machine learning, Lecture Notes in Computer Science, 13351 (2022) 307 – 318
-
S. Li, A.S. Barnard, Optimization-free inverse design of high-dimensional nanoparticle electrocatalysts using multi-target machine learning, Proc. AiCHE, 2021
-
A. Parker, A. Barnard, Avoiding biases and maximising efficiency with active learning directed simulations of small molecule surface binding, Proc. International Conference on Nanostructured Materials - NANO 2020 (2020) 41
-
S.L.Y. Chang, D. Williams, M. Roldan Gutierrez, C. Dwyer, A. Barnard, Aggregation behavior of detonation nanodiamond in solution, Micros. Microanal. 25 (2019) 1740 – 1741
-
B. Sun, A. Barnard, From process to properties: Correlating synthesis conditions, structural disorder and the catalytic performance of metallic nanoparticles, Papers of the American Chemical Society, (2018) 255
-
S.L.Y Chang, C. Dwyer, K. March, M. Mermoux, N. Nunn, O. Shenderova, E. Osawa, A.S. Barnard, Atomic and electronic structures of functionalized nanodiamond particles, Micros. Microanal. 23 (2017) 2270 – 2271
-
S.L.Y. Chang, A.S. Barnard, C. Dwyer, C.B. Boothroyd, E. Osawa, R.J. Nicholls, Surface and point defect measurements of detonation nanodiamond using combined Cs-Cc corrected TEM and ab initio calculations, Microscopy and Microanalysis 22 (2016) 1392 – 1393
-
H. Barron, G. Opletal, R. Tilley, A. Barnard, Dynamic Evolution of Catalytic Active Sites on Platinum Nanoparticles, Proceedings of the International Conference on Nanoscience and Nanotechnology (2016) 7 – 11
- M. Fernandez, C. Watkins, A. Barnard Recognition of High-performing Nanoporous Materials for Xe/Kr Separation using Convolutional Neural Networks. Proceedings of the International Conference on Nanoscience and Nanotechnology, (2016) 7 – 11
-
E. Swann, M. Per, A. Barnard, M. Coote, Hydrogen Abstraction with Quantum Monte Carlo: Quantifying energetic reaction barriers with stochastic methods. Proceedings of the International Conference on Nanoscience and Nanotechnology (2016) 7 – 11
-
S.L.Y. Chang, C. Dwyer, A.S. Barnard, R. Hocking, Atomic-scale compositional distribution in PtRu nanocatalysts, Proceedings of the 10th Asia-Pacific Microscopy Conference, (2012) 5 – 9
-
S.L.Y. Chang, A.S. Barnard, R. Hocking, C. Dwyer, Compositional distribution of bimetallic nanocatalysts at atomic scale, Proceedings of the International Conference on Nanoscience and Nanotechnology, (2012) 5 – 9
-
A.S. Barnard, Mapping the morphology of noble metal nanoparticles, Proceedings of the International Conference on Nanoscience and Nanotechnology (2012) 5 – 9
-
H. Xu, A.S. Barnard, Nano-minerals: Size-dependent crystal structure, shape and chemical reactivity changes, Geochimica et Cosmochimica Acta Supplement 72 (2008) A1045
-
H. Xu, A.S. Barnard, Crystals size and surface chemistry dependent phase diagram for nanocrystals of rutile and anatase: Experimental studies and computer modeling, Proceedings of the American Geophysical Union Fall Meeting (2008) 15-19
-
A.S. Barnard, N.A. Marks, S.P. Russo, I.K. Snook, Hydrogen stabilization of {111} nanodiamond. Mat. Res. Soc. Symp. Proc. 740 (2003) 69-74
Books & Book Chapters
- A.S. Barnard, Insights into Nanodiamond from Machine Learning, in: Novel Aspects of Diamond, Third Edition, S. Mandal and N. Yang (Eds.), Springer (2023)
- H. Guo, A.S. Barnard, Thermodynamics of Iron Oxides and Oxyhydroxides in Different Environments, in: Iron Oxides: From Nature to Applications, Third Edition, D. Faivre (Ed.), John Wiley & Sons Ltd, UK (2016)
- L. Lai, A.S. Barnard, Molecular and analytical modeling of nanodiamond for drug delivery applications, in: Computational Pharmaceutics: Application of Molecular Modeling in Drug Delivery, D. Ouyang and S.C. Smith (Eds.), John Wiley & Sons Ltd, UK (2015)
- A.S. Barnard, Distribution, Diffusion and Concentration of Defects in Colloidal Diamond, in: Nanodiamond, O. A. Williams (Eds.), Royal Society Chemistry, UK (2014)
- A.S. Barnard, Thermodynamic Cartography and Structure/Property Mapping of Potential Nanohazards, in: Towards Efficient Designing of Safe Nanomaterials, J. Leszczynski, T. Puzyn (Eds.), Royal Society Chemistry, UK (2012)
- A.S. Barnard, Stability of Diamond at the Nanoscale, Chapter 1, in: Ultrananocrystalline Diamond: Synthesis, Properties and Applications, Second Edition, D.M. Gruen, O.A. Shenderova (Eds.), Elsevier, UK (2012)
- A.S. Barnard, Modelling Gas Adsorption on Carbon Nanotubes, in: Carbon Nanostructure for Gas Adsorption, M.L. Terranova and M. Rossi (Eds.), Pan Stanford Publishing Inc., Singapore (2012)
- A.S. Barnard, Modeling Nanomorphology in Noble Metal Nanoparticles: Thermodynamic Cartography, in: Complex-Shaped Metal Nanostructures, T. K. Sau and A. Rogach (Eds.), Wiley – VCH, Germany (2011)
- Natures Nanostructures, H. Guo and A.S. Barnard, (Eds.) Pan Stanford Publishing Inc., Singapore (2011)
- I.K. Snook, A.S. Barnard, Graphene Nano-Flakes and Nano-Dots: Theory, Experiment and Applications, Chapter 13 in: Physics and Applications of Graphene - Theory, S. Mikhailov (Ed.) InTech, Croatia (2011)
- A.S. Barnard, Scientific Strategies for Predicting Risks and Hazards Associated with Nanomaterials, in: Advances in Nanotechnology, F. Columbus (Ed.) Nova Science Publishers, USA (2010)
- W. K. Liu, A. Adnan, A. Kopacz, M. Hallikainen, D. Ho, R. Lam, J.Lee, T. Belytschko, G. Schatz, Y. Tzeng, Y.-J. Kim, S. Baik, M. K. Kim, T. Kim, J. Lee, E.-S. Hwang, S. Im, E. Osawa, A.S. Barnard, H.-C. Chang, C.-C. Chang, Design of Nanodiamond Based Drug Delivery Patch for Cancer Therapeutics and Imaging Applications, in: Nanodiamonds: Applications in Biology and Nanoscale Medicine, D. Ho (Ed.), Springer Science+Business Media. Inc. USA (2010)
- A.S. Barnard, Size dependent phase transitions and phase reversal at the nanoscale, Chapter 5, in: Oxford Handbook of Nanotechnology: Volume II, A. Narlikar, and Y.Y. Fu (Eds.), Oxford University Press, UK (2009) pp. 213 – 231
- O.A. Shenderova, A.S. Barnard and D.M. Gruen, Carbon Family at the Nanoscale, Chapter 1, in: Ultrananocrystalline Diamond: Synthesis, Properties and Applications, D.M. Gruen, O.A. Shenderova (Eds.), William Andrew Publishing (2005)
- A.S. Barnard, Stability of Nanodiamond, Part 2, in: Ultrananocrystalline Diamond: Synthesis, Properties and Applications, D.M. Gruen, O.A. Shenderova (Eds.), William Andrew Publishing (2005)
- A.S. Barnard, From Nanodiamond to Nanowires, Chapter 3, in: Proceedings of the NATO/OTAN Advanced Research Workshop on Ultrananocrystalline Diamond, D.M. Gruen, O.A. Shenderova and A.Ya. Vul (Eds.), Kluwer (2005)
- A.S. Barnard, S.P. Russo, I.K. Snook, Modeling of Stability and Phase Transformations in Zero- and One-Dimensional Nanocarbon Systems, Chapter 36, in: Handbook of Theoretical and Computational Nanotechnology, M. Rieth and W. Schommers (Eds.), American Scientific Publishers (2005)
Published Datasets
- A. Barnard, G. Opletal, 2023, Fullerene Data Set, v1. CSIRO Data Collection, https://doi.org/10.25919/dxd2-d239
- A. Barnard, G. Opletal, 2023, Palladium Nanoparticle Data Set, v2. CSIRO Data Collection. https://doi.org/10.25919/epxd-8p61
- K. Lu, J. Ting, A. Barnard, G. Opletal, 2023, AuPdPt Nanoparticle Data Set, v1. CSIRO. Data Collection. https://doi.org/10.25919/psvw-am47
- J. Ting, A. Barnard, G. Opletal, 2023, AuCo Nanoparticle Data Set, v2. CSIRO Data Collection. https://doi.org/10.25919/7h3x-1343
- J. Ting, A. Barnard, G. Opletal, 2023, AuPd Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/v0r5-sw08
- J. Ting, A. Barnard, G. Opletal, 2023, AuPt Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/7zh9-3f67
- J. Ting, A. Barnard, G. Opletal, 2023, CoAu Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/991j-hg07
- J. Ting, A. Barnard, G. Opletal, 2023, CoPd Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/em3a-9a89
- J. Ting, A. Barnard, G. Opletal, 2023, CoPt Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/0bs4-sn79
- J. Ting, A. Barnard, G. Opletal, 2023, PdAu Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/6ajg-1275
- J. Ting, A. Barnard, G. Opletal, 2023, PdCo Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/az9t-vr97
- J. Ting, A. Barnard, G. Opletal, 2023, PdPt Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/qced-2e85
- J. Ting, A. Barnard, G. Opletal, 2023, PtAu Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/tdnv-jp30
- J. Ting, A. Barnard, G. Opletal, 2023, PtCo Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/jzh8-rd31
- J. Ting, A. Barnard, G. Opletal, 2023, PtPd Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/9sz9-3a85
- A. Barnard, B. Motevalli Soumehsaraei, B. Sun, 2019, Periodic Graphene Oxide Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/5e30b45f9852c
- A. Barnard, B. Motevalli Soumehsaraei, B. Sun, L. Lai, 2019, Neutral Graphene Oxide Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/5e30b44a7c948
- A. Barnard, B. Motevalli Soumehsaraei, B. Sun, L. Lai, 2019, Anionic Graphene Oxide Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/5e30a9cf118cf
- A. Barnard, B. Motevalli Soumehsaraei, B. Sun, L. Lai, 2019, Cationic Graphene Oxide Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/5e30a9cf90439
- A. Barnard, G. Opletal, 2019, Copper Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/5e30ba386311f
- A. Barnard, G. Opletal, 2019, Ruthenium Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/5e30b8fa67484
- A. Barnard, G. Opletal, 2019, Disordered Silver Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/5e30b5231c669
- A. Barnard, G. Opletal, 2019, Nickel Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/5e30b73382a79
- A. Barnard, G. Opletal, 2019, Gold Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/5d395ef9a4291
- A. Barnard, G. Opletal, 2019, Platinum Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/5d3958d9bf5f7
- A. Barnard, B. Motevalli Soumehsaraei, 2019, Graphene Oxide Nanoflake Archetypes and Prototypes, v1. CSIRO Data Collection. https://doi.org/10.25919/5d1304152364a
- A. Barnard, 2018, Twinned Nanodiamond Data Set, v1. CSIRO Data Collection, https://doi.org/10.25919/5ba82cf09627f
- A. Barnard, 2018, Graphene Oxide Structure Set, v1. CSIRO Data Collection, https://doi.org/10.25919/5b91c8b150944
- A. Barnard, B. Sun, B. Motevalli Soumehsaraei, G. Opletal, 2017, Silver Nanoparticle Data Set, v3. CSIRO Data Collection, https://doi.org/10.25919/5d22d20bc543e
- A. Barnard, B. Sun, B. Motevalli, G. Opletal, 2017, Silver Nanoparticle Structure Set, v3. CSIRO Data Collection,https://doi.org/10.25919/5d22d20bc543e
- E. Swann, M. Fernandez Llamosa, A. Barnard, M. Coote, 2017, CMolsC-org Quantum Chemical Test Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/58bcf3005e549
- E. Swann, M. Fernandez Llamosa, A. Barnard, M. Coote, 2017, CMolsC-1 Quantum Chemical Test Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/58bcf1565950a
- E. Swann, M. Fernandez Llamosa, A. Barnard, M. Coote, 2017, CMolsT-org Quantum Chemical Test Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/58bcf2cf53bbe
- E. Swann, M. Fernandez Llamosa, A. Barnard, M. Coote, 2017, CMolsT-1 Quantum Chemical Test Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/58bcf21ca85b6
- A. Barnard, 2016, Nanodiamond Data Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/571F076D050B1
- A. Barnard, B. Sun, H.Q. Shi, 2016, Graphene Nanoflake Data Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/57998CC4D7891
- A. Barnard, H. Wilson, 2015, Silicon Quantum Dot Data Set, v2. CSIRO Data Collection, http://doi.org/10.4225/08/5721BB609EDB0
- A. Barnard, 2014, H. Wilson, Germanium Nanoparticle Structure Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/546A9FB866B37
- A. Barnard, 2014, H. Wilson, Silicon Nanoparticle Structure Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/546AA009190C4
- A. Barnard, 2014, Diamond Nanoparticle Structure Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/546A9F79EC99C
- A. Barnard, 2014, Graphene Structure Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/541F61EC81EE3
- A. Barnard, 2014, Carbide Nanotube Structure Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/541F61B0666C1
- A. Barnard, 2014, Boron Nitride Nanotube Structure Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/541F6178B7905
Published Software
- A. Parker, A. Barnard, 2020, Hunt and Gather. v1. CSIRO Software Collection. https://doi.org/10.25919/hvkk-k494
- A. G. Opletal, M. Golebiewski, A. Barnard, 2020, Simulated Nanostructure Assembly with Protoparticles (SNAP), v1. CSIRO Software Collection. https://doi.org/10.25919/5e5c662a0597e
- A. Barnard, A. Parker, 2019, Iterative Label Spreading, v1. CSIRO Software Collection. https://doi.org/10.25919/5d806280b91a9
- B. Motevalli Soumehsaraei, A. Barnard, 2019, Archetypal Analysis Package, v1. CSIRO Software Collection. https://doi.org/10.25919/5d3958889f7ff
- B. Motevalli Soumehsaraei, A. Barnard, 2019, QuickThermo, v1. CSIRO Software Collection. https://doi.org/10.25919/5d39589c523d4
- G. Opletal, A. Barnard, 2018, PorosityPlus, v1. CSIRO Software Collection. https://doi.org/10.25919/5b8e0ffa8afaa
2008 Alumnus of the Year Award - RMIT University, AUST
2008 Queen Elizabeth II Fellowship - Australia Research Council, AUST
2008 L'Oreal Australia "For Women in Science" Award - L'Oreal - UNESCO, AUST
2005 Extraordinary Junior Research Fellowship - The Queen's College, Oxford, UK
2005 Violette \& Samuel Glasstone Fellowship - University of Oxford, UK
2004 Innovation Award (Student Category) - RMIT University, AUST
2004 University Research Prize - RMIT University, AUST
2003 CNM Distinguished Postdoctoral Fellowship - Argonne National Laboratory (ANL), USA
Boards
- Strategic Advisor, Board of Directors, Pawsey Supercomputing Research Centre, AUST (2023 – current)
- Independent Director, Board of Directors, New Zealand eScience Infrastructure (NeSI), NZ (2019 – current)
- Advisory Board, Our Health in Our Hands (OHIOH), ANU, AUST (2019 – current)
- Advisory Board, ChoiceFlows Inc., North Carolina, USA (2019 – current)
- External Advisory Board, AIBN Centre for Theoretical and Computational Molecular Science (CTCMS), University of Queensland, AUST (2014 – current)
- Academic Board, Australian National University (2021 – 2022)
- Scientific Advisory Board, Centre for Biomedical Data Visualisation (BioViS), Garvan Institute, AUST (2017 – 2021)
- Course Advisory Board (Masters program), Department of Chemistry and Physics, La Trobe University, AUST (2015 – 2017)
- External Advisory Board, Centre for the Study of Choice (CenSoC), University of Technology - Sydney (UTS), AUST (2011 – 2013)
Panels
- College of Assessors, New Zealand Ministry of Business, Innovation & Employment (MBIE), NZ (2020 – current)
- Expert Panel, Competitive Research Programme, National Research Foundation, Singapore (2019 – current)
- Assessment Panel, New Zealand–Singapore Data Science Research Programmes, NZ Ministry of Business, Innovation & Employment and Singapore Data Science Consortium (2020)
- Selection Panel, Frederick White Medal, Australian Academy of Science (2019 – current)
- Assessment Panel, New Zealand Data Science Research Programmes (NZ$49mil investment), Ministry of Business, Innovation & Employment, NZ (2019)
- Mid-term Review Panel, Centres of Research Excellence (CoREs, 10 in total), Tertiary Education Commission, NZ (2017)
- Jury, L'Oréal For Women in Science Fellowships, AUST/NZ (2016 – 2020)
- Panel of Expert Advisors (Physical Sciences), The Nature Index, Nature Publishing Group, UK (2013 – 2020)
- Panel of Judges, Eureka Prize for Early Career Research, Australian Museum, AUST (2011 – 2016)
Committees
- Chair, Jubilee Joint Fellowship Program, School of Computing, Australian National University, AUST (2021 – current)
- Chair, Pioneering Women Program, School of Computing, Australian National University, AUST (2021 – current)
- Chair, Tenure Track Recruitment Committee & Panel, School of Computing, Australian National University, AUST (2021 – current)
- Program Committee, Pawsey Centre for Extreme Scale Readiness (PaCER), AUST (2020 – current)
- Chair, Higher Degree Scholarship Committee, School of Computing, Australian National University, AUST (2021 – 2023)
- Chair, Australian Leadership Computing Grants (ALCG), National Computational Infrastructure, AUST (2020 – 2023)
- Local Promotions Committee, College of Engineering and Computer Science, Australian National University, AUST (2020)
- Deputy Chair, Change Management Group, Pawsey Supercomputing Centre Capital Refresh ($70mil NCRIS investment), AUST (2018 – 2022)
- Chair, User Reference Group, Pawsey Supercomputing Centre Capital Refresh ($70mil NCRIS investment), AUST (2018 – 2020)
- Materials Research Society (MRS) Award Nominations Subcommittee, USA (2019 – 2020)
- Chair, National Computational Merit Allocation Scheme (NCMAS), AUST (2018 – 2019)
- Procurement Steering Committee, National Computational Infrastructure ($70mil NCRIS investment), AUST (2018 – 2019)
- Data61 Executive Science & Technology Sub-Committee, CSIRO, AUST (2017 – 2018)
- Pawsey Supercomputing Centre Partner Allocation Scheme, AUST (2015 – 2019)
- Data61 Rewards (Promotions) Committee, CSIRO, AUST (2017 – 2018)
- Data61 Scholarship Committee (VIC/TAS/WA, NSW/SA), Data61, CSIRO, AUST (2016 – 2018)
- Athena Early Adopters Committee, Pawsey Supercomputing Centre, AUST (2017)
- Deputy Chair, National Computational Merit Allocation Scheme (NCMAS), AUST (2016 – 2017)
- Pawsey Supercomputing Uptake Strategy Group, AUST (2015 – 2016)
- National Computational Merit Allocation Scheme (NCMAS), AUST (2012 – 2016)
Editorial Boards
- Editor-in-Chief, Nano Futures, Institute of Physics (2021 – current)
- Chair, Executive Editorial Board, Nano Futures, Institute of Physics (2018 – current)
- Executive Editorial Board, Journal of Physics: Materials, Institute of Physics (2018 – current)
- Editorial Advisory Board, Advanced Theory & Simulations, Wiley-VCH (2021 – current)
- Editorial Advisory Board, Nanoscale, Royal Society of Chemistry (2013 – current)
- Guest Editor, Special Issue on Artificial Intelligence in Electrochemical Energy Storage, Batteries & Supercaps, Wiley-VCH (2020 – 2022)
- Guest Editor, Special Issue on Advanced Material Modelling, Machine Learning and Multiscale Simulation, Journal of Physics: Materials, IOP (May 2019)
- Senior Associate Editor, Science Advances, AAAS (2014 – 2017)
- Guest Editor, Special Issue on Modelling for the Nanoscale, Nanoscale, RSC (February 2012)
- Guest Editor, Special Issue on CVD Growth of Nanodiamond, Advanced Materials-CVD, Wiley (September 2008)
- Guest Editor, Special Issue on Theory and Simulation of Nanomorphology, Journal of Computational and Theoretical Nanoscience (March 2007)
- Associate Editor, Journal of Computational and Theoretical Nanoscience, American Scientific Publishers (2005 – 2011)